Contents

1	Setu	սթ	2
2	Qua	ality assessment and pre-processing	2
	2.1	Importing gene expression data	2
	2.2	Importing phenotypic data	3
	2.3	Batch processing information	11
	2.4	Addition of metadata	11
	2.5	Quality Assessment and normalization	12
	2.6	Batch Effect identification	19
	2.7	Summary of quality assessment diagnostics	23
	2.8	Session Information	25
3	Diff	erential gene expression analysis	25
	3.1	Population study analysis	26
	3.2	Non-specific filtering by functional features	28
	3.3	Estimation of hidden factors of expression heterogeneity	29
	3.4	Non-specific filtering by variability	29
	3.5	Differentially expressed gene calling	30
	3.6	Estimation of the number of DE genes with a smaller sample size	62
	3.7	Comparison between FIRS and FIR signature	66
	3.8	Differential expression analysis in severe FIR	70
	3.9	Session Information	95
4	Fun	ctional analysis of differentially expressed genes	96
	4.1	Enrichment of DE genes in Gene Ontology (GO) terms	96
	4.2	Enrichment of DE genes in immune reponse pathways 1	.63
	4.3	Enrichment of DE genes in apoptosis and senescence pathways 1	72
	4.4	Enrichment of DE genes among targets of FMRP (FMR1 gene)	.77
	4.5	Enrichment of DE genes among targets of the APC gene	78
	4.6	Enrichment of DE genes in human phenotype ontology (HPO) terms	79
	4.7	Enrichment of DE genes among umbilical cord mensenchymal stem cell markers 1	84
	4.8	Summary table for targeted gene sets	86
	4.9	Session Information	86

1 Setup

This entire analysis is carried out in R using a variety of packages available at the Comprehensive R Archive Network (CRAN) (1) and at the Bioconductor project (2). Among the latter bundle of packages, Biobase provides a function called cache() which we will employ all throughout the entire analysis in order to load pre-computed results when we do not want to calculate them again. For this purpose we will create a directory called results and three subdirectories (QA_dir, DE_dir, FA_dir and FIG_dir). Pre-computed objects and figures will be stored in the corresponding subdirectory and prefixed by names QA_, DE_ or FA_. In order to re-compute everything it suffices then to remove the directories with names under results or individual files from calculations we want to re-compute.

Our first step in our analysis is to set the directories into the corresponding variables, and create them, if do not exist.

```
> cacheDir_QA <- "results/QA_dir"</pre>
> cachePrefix_QA <- "QA_"</pre>
> cacheDir_DE <- "results/DE_dir"</pre>
> cachePrefix_DE <- "DE_"</pre>
> cacheDir_FE <- "results/FE_dir"</pre>
> cachePrefix_FE <- "FE_"</pre>
> cacheDir_NE <- "results/NE_dir"</pre>
> cachePrefix_NE <- "NE_"</pre>
> cacheDir_FIG <- "results/FIG_dir"</pre>
> cacheDir_TAB <- "results/FIG_dir"</pre>
 if (!file.exists("results"))
    dir.create("results")
 if (!file.exists(cacheDir_QA))
>
    dir.create(cacheDir_QA)
> if (!file.exists(cacheDir_DE))
    dir.create(cacheDir_DE)
> if (!file.exists(cacheDir_FE))
    dir.create(cacheDir_FE)
> if (!file.exists(cacheDir_NE))
    dir.create(cacheDir_NE)
> if (!file.exists(cacheDir_FIG))
    dir.create(cacheDir_FIG)
```

2 Quality assessment and pre-processing

We start pre-processing the raw microarray data through the following steps: import gene expression and phenotypic data, batch effect identification, surrogate variable identification and normalization. After these pre-processing steps we perform a differential expression analysis followed by a functional enrichment analysis.

2.1 Importing gene expression data

We import the publicly available raw expression data from the Cohen *et al.* (2007) study deposited at Gene Expression Omnibus (National Center for Biotechnology Information, Bethesda, MD) (3) with accession number GSE8586.

The raw expression data were obtained with an Affymetrix HG-133plus2 chip, and therefore, it is stored in the so-called CEL format files. We use the function Readaffy() from the affy package to read CEL files into an AffyBatch object.

2.2 Importing phenotypic data

We start by fetching part of the phenotpypic data from the so-called SOFT file available at GEO under accesion number GSE8586, using the the function getGEO() from the GEOquery package. This function downloads the corresponding data from the internet and stores the them into the file phenoData/phenoData.txt.

Using the function read.table() we read into R the previously downloaded data creating and *data.frame* object called GSE8586.pData:

```
> GSE8586.pData <- read.table(file=file.path("phenoData", "phenoData.txt"),</pre>
                              sep="\t", header=TRUE, quote="", row.names=1,
                              stringsAsFactors=FALSE)
> head(GSE8586.pData, n=3)
                             title geo_accession
                                                                status
GSM213072 umbilical cord_nobpd: 1A
                                     GSM213072 Public on Jul 26 2007
GSM213073
          umbilical cord_bpd: 1C
                                      GSM213073 Public on Jul 26 2007
GSM213074 umbilical cord_bpd: 1D GSM213074 Public on Jul 26 2007
         submission_date last_update_date type channel_count
GSM213072
             Jul 25 2007
                              Aug 14 2011 RNA
                                                            1
             Jul 25 2007
                              Aug 14 2011 RNA
GSM213073
                                                            1
GSM213074
             Jul 25 2007
                              Aug 14 2011 RNA
                                                            1
                                      source_name_ch1 organism_ch1
GSM213072 umbilical cord tissue; high gestational age Homo sapiens
GSM213073 umbilical cord tissue; high gestational age Homo sapiens
GSM213074 umbilical cord tissue; low gestational age Homo sapiens
         characteristics_ch1 molecule_ch1
GSM213072
               27 weeks male
                               total RNA
GSM213073
              27 weeks female
                                total RNA
GSM213074
               24 weeks male
                                total RNA
GSM213072 initial step used Trizol extraction of RNA, following manufacturer's recommended protoc
GSM213073 initial step used Trizol extraction of RNA, following manufacturer's recommended protoc
GSM213074 initial step used Trizol extraction of RNA, following manufacturer's recommended protoc
         label_ch1
GSM213072
            biotin
GSM213073
            biotin
GSM213074
            biotin
GSM213072 GeneChipÂ■ One-Cycle Target Labeling and Control Reagents according to the manufacture:
GSM213073 GeneChip One-Cycle Target Labeling and Control Reagents according to the manufacture:
GSM213074 GeneChip One-Cycle Target Labeling and Control Reagents according to the manufacture:
         taxid_ch1
GSM213072
              9606
              9606
GSM213073
GSM213074
              9606
GSM213072 Affymetrix Hybridization Oven 640 and GeneChipÂ■ Fluidics Station 450 according to the
GSM213073 Affymetrix Hybridization Oven 640 and GeneChipÂ∎ Fluidics Station 450 according to the
GSM213074 Affymetrix Hybridization Oven 640 and GeneChipÂ∎ Fluidics Station 450 according to the
                                                                                    scan_protoco
GSM213072 Affymetrix GeneChipÂ∎ Scanner 3000 according to the manufacturer's recommended protocol
GSM213073 Affymetrix GeneChipÂ∎ Scanner 3000 according to the manufacturer's recommended protocol
```

```
GSM213074 Affymetrix GeneChipÂ∎ Scanner 3000 according to the manufacturer's recommended protocol
                   description
                                       data_processing platform_id
GSM213072 high gestational age MAS_5.0 scaled to 1500
                                                            GPL570
GSM213073 high gestational age MAS_5.0 scaled to 1500
                                                            GPL570
GSM213074 low gestational age MAS_5.0 scaled to 1500
                                                            GPL570
              contact_name
                                                   contact_email contact_phone
GSM213072 Jennifer, N, Cohen jennifer.cohen@childrens.harvard.edu
                                                                    6177328263
GSM213073 Jennifer, N, Cohen jennifer.cohen@childrens.harvard.edu
                                                                     6177328263
GSM213074 Jennifer, N, Cohen jennifer.cohen@childrens.harvard.edu
                                                                     6177328263
          contact_department
                                         contact_institute
                                                             contact_address
GSM213072
            Newborn Medicine Brigham and Women's Hospital 75 Francis Street
GSM213073
            Newborn Medicine Brigham and Women's Hospital 75 Francis Street
GSM213074
            Newborn Medicine Brigham and Women's Hospital 75 Francis Street
          contact_city contact_state contact_zip.postal_code contact_country
GSM213072
                Boston
                                  MA
                                                         2115
                                                                           USA
GSM213073
                Boston
                                  MA
                                                         2115
                                                                           USA
GSM213074
                Boston
                                  MA
                                                         2115
                                                                           USA
                                                                                            supple
GSM213072 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSM213nnn/GSM213072/GSM2
GSM213073 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSM213nnn/GSM213073/GSM2
GSM213074 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSM213nnn/GSM213074/GSM2
          data_row_count
GSM213072
                   54675
GSM213073
                   54675
GSM213074
                   54675
> GSE8586.pData$title
 [1] "umbilical cord_nobpd: 1A"
                                    "umbilical cord_bpd: 1C"
                                    "umbilical cord_nobpd: 1E"
 [3] "umbilical cord_bpd: 1D"
 [5] "umbilical cord_nobpd: 2A"
                                    "umbilical cord_bpd: 2B"
 [7] "umbilical cord_nobpd: 2C"
                                    "umbilical cord_nobpd: 2D"
 [9] "umbilical cord_nobpd: 2E"
                                    "umbilical cord_nobpd: 2G"
[11] "umbilical cord_nobpd: 3A"
                                    "umbilical cord_bpd: 3B"
[13] "umbilical cord_nobpd: 3C"
                                    "umbilical cord_nobpd: 3D"
[15] "umbilical cord_bpd: 3E"
                                    "umbilical cord_nobpd: 3F"
[17] "umbilical cord_nobpd: 3G"
                                    "umbilical cord_nobpd: 4A"
[19] "umbilical cord_nobpd: 4B"
                                    "umbilical cord_nobpd: 4C"
[21] "umbilical cord_nobpd: 4D"
                                    "umbilical cord_nobpd: 5A"
[23] "umbilical cord_bpd: 5B"
                                    "umbilical cord_bpd: 5C"
[25] "umbilical cord_nobpd: 5D"
                                    "umbilical cord_nobpd: 5F"
[27] "umbilical cord_bpd: 5H"
                                    "umbilical cord_nobpd: 6A"
[29] "umbilical cord_nobpd: 6D"
                                    "umbilical cord_nobpd: 6E/2F"
[31] "umbilical cord_bpd: 6F"
                                    "umbilical cord_bpd: 6H"
[33] "umbilical cord_bpd: 7C"
                                    "umbilical cord_nobpd: 7D"
[35] "umbilical cord_bpd: 7F"
                                    "umbilical cord_bpd: 7H"
[37] "umbilical cord_bpd: 8A"
                                    "umbilical cord_nobpd: 8D"
[39] "umbilical cord_nobpd: 8F"
                                    "umbilical cord_nobpd: 9A"
[41] "umbilical cord_bpd: 9C"
                                    "umbilical cord_nobpd: 9D"
[43] "umbilical cord_bpd: 9F"
                                    "umbilical cord_bpd: 9I"
[45] "umbilical cord_bpd: 2I"
                                    "umbilical cord_nobpd: 3I"
[47] "umbilical cord_nobpd: 4F"
                                    "umbilical cord_bpd: 4I"
[49] "umbilical cord_nobpd: 51"
                                    "umbilical cord_nobpd: 71"
[51] "umbilical cord_nobpd: 8B"
                                    "umbilical cord_nobpd: 8C"
[53] "umbilical cord_bpd: 8I"
                                    "umbilical cord_nobpd: 9B"
```

Some of the variables in GSE8586.pData are irrelevant or require a transformation for the purpose of our investigation. We update the GSE8586.pData object by modifying or creating new variables that will be

incorporated in following steps. Explanation of the variables is found later in the analysis. We check first that all sample identifiers between the phenotypic data and the expression data match.

```
> stopifnot(all(rownames(GSE8586.pData) == sampleNames(affyCELonly))) ## QC
```

We proceed to code the phenotypic variables in three steps, specifying their role as exogenous, endogenous or response:

• Explanatory/exogenous/context variables:

• Intermediate/endogenous variables:

```
> GSE8586.pData$Pt1 <- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Pih <- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Cs <- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Acs <- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Plate<- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Cord<- rep(NA, dim(GSE8586.pData)[1])
> GSE8586.pData$Chorio<- rep(NA, dim(GSE8586.pData)[1])</pre>
```

• Response variables:

```
> GSE8586.pData$FIR <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Bpd <- sub("cord_", "",</pre>
                              sub(".+(cord_bpd|cord_nobpd).+", "\\1",
                                  as.character(GSE8586.pData$title)))
> GSE8586.pData$DaysVent <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$VentGT7days <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Days02 <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$02GE28days <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Nec <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$NecEnt<- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Rop <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Pda <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Sepsis <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Funisitis<- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Ivh <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Wmd <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Cp <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Mdi <- rep(NA, dim(GSE8586.pData)[1])</pre>
> GSE8586.pData$Pdi <- rep(NA, dim(GSE8586.pData)[1])</pre>
```

The phenotypic information stored in GEO did not contain all the clinical data from the ELGAN cohort summarized in the paper by Cohen *et al.* (2007). We obtained additional phenotypic data directly from authors in the form of an Excel file stored in phenoData/phenotype_data_sheet_9.20.06.xls. The following lines of code read these phenotypic data and incorporate them into a *data.frame* called pDataCohen filtering out those records that did not match individuals in the microarray data.

```
> fname <- file.path(getwd(), "phenoData",</pre>
                        "phenotype_data_sheet_9.20.06.xls")
> cache(pDataCohen <- read.xlsx(fname, 1),</pre>
        dir=cacheDir_QA, prefix=cachePrefix_QA)
> head(pDataCohen)
       id bpd
                     bw sex acs iopd daysvent dayso2 fsvneut uc fv linkid number
                  ga
1 2302221
             0 23.4 532
                            0
                                1
                                      1
                                                3
                                                        3
                                                                NA NA NA
                                                                               3i
                                                                                      24
2 1200692
             0 25.0 720
                                                       67
                                                                 0
                                                                    0
                                                                        0
                                                                                      41
                                               38
                                                                               6d
                            1
                                1
                                      1
                                                       72
                                                                    0
                                                                       0
3 1200691
             0 25.0 790
                            1
                                1
                                      1
                                               36
                                                                 0
                                                                               5d
                                                                                      36
4 1200711
             0 25.4 713
                            1
                                2
                                      2
                                               33
                                                       70
                                                                 O NA NA
                                                                               3d
                                                                                      20
5 1301551
             0 26.0 840
                                2
                                      6
                                                1
                                                       60
                                                                                      17
                            1
                                                                    1
                                                                       1
                                                                               3a
                                                                 1
                                                                    0
             0 26.0 930
                                      5
                                                                 0
                                                                       0
6 1301631
                            1
                                2
                                               32
                                                       67
                                                                               4f
                                                                                      30
  outcome hi.low
1
       no
              low
2
              low
       no
3
       no
              low
4
              low
       no
5
       no
              low
6
              10w
       no
> dim(pDataCohen)
[1] 59 16
> colnames(pDataCohen)
 [1] "id"
                  "bpd"
                                           "bw"
                                                       "sex"
                                                                   "acs"
                              "ga"
                                                                   "fv"
 [7] "iopd"
                  "daysvent"
                                           "fsvneut"
                                                       "uc"
                              "dayso2"
[13] "linkid"
                  "number"
                              "outcome"
                                          "hi.low"
> id <- pDataCohen$linkid</pre>
> id <- as.character(as.vector(id))</pre>
> id <- toupper(id)</pre>
> pDataCohen$linkid <- id
> pDataCohen <- pDataCohen[, c("linkid", "bw", "daysvent", "dayso2")]</pre>
> dim(pDataCohen)
[1] 59 4
> head(pDataCohen)
  linkid bw daysvent dayso2
1
      3I 532
                      3
                              3
2
      6D 720
                     38
                             67
3
      5D 790
                     36
                             72
4
      3D 713
                     33
                             70
5
      3A 840
                             60
                      1
      4F 930
6
                     32
                             67
> tail(pDataCohen)
             bw daysvent dayso2
   linkid
54
       3E 1080
                       15
                               58
       1G
            630
                               NA
55
                       NA
56
       7B
            710
                       NA
                               NA
57
       8E
            760
                       NA
                               NΔ
58
       7A
            690
                       NA
                               NA
59
     <NA>
             NA
                       NA
                               NA
```

> pDataCohen <- pDataCohen[-59,] ## remove entry 59 whose values are all NAs > dim(pDataCohen) [1] 58 4 > pDataCohen\$linkid [1] "3I" "6D" "5D" "3D" "3A" "4F" [7] "4D" "3G" "9A" "4C" "2C" "5I" "5F" "7D" [13] "8B" "1A/4E/5E" "6E/2F/1B" "7T" "8C" "8F" [19] "3F" "9B" "5A" "6A" [25] "2G" "2E" "1E" "3C" "2D" "44" "9D" "8D" "2A" "4I" "9I" [31] "4B" "1D" "2B" [37] "6F" "3B" "7C" "84" "9F" "7H" "6H" "5B" "9C" [43] "5C" [49] "2I" "5H" "8I" "1C" "7F" "3E" [55] "1G" "7B" "8E" "7A" > GSE8586.pData\$LinkId [1] "1A" "1C" "1D" "1E" "2A" "2B" "2C" "2D" "2E" [10] "2G" "3A" "3B" "3C" "3D" "3E" "3F" "3G" "4A" [19] "4B" "4C" "4D" "5B" "5C" "5F" "5H" "5A" "5D" "7F" [28] "6A" "6D" "6E/2F" "6F" "6H" "7C" "7D" "7H" [37] "8A" "8D" "8F" "9A" "90" "9D" "9F" "9T" "2I" "4F" "4T" "5I" "7I" "8B" "8T" "9B" [46] "3I" "8C" > idGSE8586 <- pDataCohen\$linkid %in% GSE8586.pData\$LinkId > idFalse <- which(!idGSE8586)</pre> > idFalse [1] 15 16 55 56 57 58 > pDataCohen[idFalse,] ## check entries that do not match to the microarray data linkid bw daysvent dayso2 15 1A/4E/5E 770 17 46 16 6E/2F/1B 770 29 1 55 1G 630 NA NA 56 7B 710 NA NA 8E 760 57 NA NA 7A 690 NA 58 NA > # Change the linkid of row 15 and 16 > pDataCohen[15,]\$linkid <- c("1A") ## select one of the multiple IDs to match the microarray da > pDataCohen[16,]\$linkid <- c("6E/2F") ## select one of the multiple IDs to match the microarray > idGSE8586 <-pDataCohen\$linkid %in% GSE8586.pData\$LinkId</pre> > idTrue <- which(idGSE8586)</pre> > pDataCohen <- pDataCohen[idTrue,] ## select phenotypic data matching the microarray data > dim(pDataCohen) [1] 54 4

Further clinical data from the paper by Cohen *et al.* (2007) was missing from all previous files. We applied to the ELGAN data access committee for access to them and stored them into a plain text file in phenoData/phenoData2.txt. These phenotypic data, and the previous one stored in the *data.frame* pDataCohen are incorporated into the GSE8586.pData object with the following lines of code:

Some of the variables define missing values with the string unkn. We replace these strings by the R missing value NA:

```
> whunkn <- which(apply(GSE8586.pData, 2, function(x) any(x == "unkn", na.rm=FALSE)))</pre>
> whunkn
Plate
         Cord
                 Rop
                        Pda Sepsis
                                       Ivh
    46
           47
                  57
                          58
                                 59
                                        61
> for(i in whunkn) print(table(GSE8586.pData[[i]]))
 no unkn
           yes
 36
        2
           16
 no unkn
          yes
 29
        7
            18
 no unkn yes
 27
        1
            26
 no unkn
           yes
  14
        2
            38
 no unkn yes
 48
       1
             5
 no unkn yes
 41
        1
           12
> for (i in whunkn)
    GSE8586.pData[[i]] <- ifelse(GSE8586.pData[[i]] == "unkn", NA, GSE8586.pData[[i]])
> for(i in whunkn) print(table(GSE8586.pData[[i]], useNA="always"))
 no yes <NA>
 36
      16
             2
     yes <NA>
 no
 29
       18
             7
      yes <NA>
 no
 27
       26
             1
      yes <NA>
 no
       38
  14
             2
 no yes <NA>
       5
  48
             1
```

no yes <NA> 41 12 1

We define the phenotypic variables Bpd, Male, Chorio and Funisitis in the GSE8586.pData object as binary variables with levels yes and no:

```
> bpd <- which(GSE8586.pData$Bpd == "bpd")</pre>
> nobpd <- which(GSE8586.pData$Bpd == "nobpd")</pre>
> GSE8586.pData$Bpd[bpd] <- "yes"</pre>
> GSE8586.pData$Bpd[nobpd] <- "no"</pre>
> male <- which(GSE8586.pData$Sex == "male")</pre>
> female <- which(GSE8586.pData$Sex == "female")</pre>
> GSE8586.pData$Male[male]<- "yes"</pre>
> GSE8586.pData$Male[female] <- "no"</pre>
> plate <- which(GSE8586.pData$Plate == "yes")</pre>
> cord <- which(GSE8586.pData$Cord == "yes")</pre>
> plateNo <- which(GSE8586.pData$Plate == "no")</pre>
> cordNo <- which(GSE8586.pData$Cord == "no")</pre>
> chorio <- intersect(plate,cordNo)</pre>
> fun <- intersect(plateNo,cord)</pre>
> choFun <- union(plate, cord)</pre>
> chorioNo <- union(plateNo, cord)</pre>
> funNo <- union(cordNo, plate)</pre>
> choFunNo <- intersect(cordNo, plateNo)</pre>
> GSE8586.pData$Chorio[chorio] <- "yes"</pre>
> GSE8586.pData$Chorio[chorioNo] <- "no"</pre>
> GSE8586.pData$Funisitis[fun] <- "yes"</pre>
> GSE8586.pData$Funisitis[funNo] <- "no"</pre>
```

The fetal inflammatory response (FIR) status variable is defined by the presence of neutrophils in either the chorionic plate or in the umbilical chord.

> GSE8586.pData\$FIR[choFun] <- "yes" > GSE8586.pData\$FIR[choFunNo] <- "no"</pre>

We create now the variable corresponding to necrotizing enterocolitis.

```
> stopifnot(all(!is.na(GSE8586.pData$Nec))) ## QC
> necNo <- which(GSE8586.pData$Nec== "no")
> nec <- which(!GSE8586.pData$Nec== "no")
> GSE8586.pData$NecEnt[nec] <- "yes"
> GSE8586.pData$NecEnt[necNo] = "no"
```

We store the days of mechanical ventilation and supplemental oxygen, as well as binarized versions of them using 7 and 27 days as cutoffs, respectively.

```
> GSE8586.pData$DaysVent <- as.numeric(GSE8586.pData$DaysVent)</pre>
```

```
> ventmore7days <- which(GSE8586.pData$DaysVent > 7)
```

```
> ventlLessEqualThan7days <- which(GSE8586.pData$DaysVent <= 7)</pre>
```

> GSE8586.pData\$VentGT7days[ventmore7days] <- "yes"</pre>

```
> GSE8586.pData$VentGT7days[ventlLessEqualThan7days] <- "no"</pre>
```

```
> table(GSE8586.pData$VentGT7days, useNA="ifany")
```

```
no yes <NA>
30 23 1
```

```
no yes
min 0 10
max 7 77
> GSE8586.pData$Days02 <- as.numeric(GSE8586.pData$Days02)</pre>
> oxygen28days <- which(GSE8586.pData$Days02 > 27)
> oxygenLess28days <- which(GSE8586.pData$Days02 < 27)</pre>
> GSE8586.pData$02GE28days[oxygen28days] <- "yes"</pre>
> GSE8586.pData$02GE28days[oxygenLess28days] <- "no"</pre>
> table(GSE8586.pData$02GE28days, useNA="ifany")
  no yes <NA>
  14
      39
             1
> sapply(split(GSE8586.pData$Days02, GSE8586.pData$02GE28days),
         function(x) do.call("names<-", list(range(x), c("min", "max"))))</pre>
    no yes
min 2 28
max 26 91
```

We store the body weight and a binarized version for indicating extremely low body weight (ELBW) with 1000 grams as cutoff value.

```
> GSE8586.pData$Bw <- as.numeric(GSE8586.pData$Bw)
> bwLess1000 <- which(GSE8586.pData$Bw < 1000)
> bwmoreEqual1000 <- which(GSE8586.pData$Bw >= 1000)
> GSE8586.pData$Elbw[bwLess1000] <- "yes"
> GSE8586.pData$Elbw[bwmoreEqual1000] <- "no"
> table(GSE8586.pData$Elbw, useNA="ifany")
no yes
19 35
> sapply(split(GSE8586.pData$Bw, GSE8586.pData$Elbw),
            function(x) do.call("names<-", list(range(x), c("min", "max"))))
            no yes
min 1015 460
max 1360 980
```

We also import through the ELGAN data access committee clinical information about the neurological condition of the infants.

Finally, select the phenotypic variables that are relevant for the analysis.

```
> explanatoryVariables <- c("LinkId", "Batch", "Bw", "Elbw", "Ga", "GaGE27weeks",
                                 "Sex", "Male", "Nonwhite")
> intermediateVariables <- c("Ptl", "Pih", "Cs", "Acs", "Plate", "Cord", "Chorio")
> responseVariables <- c("FIR", "Bpd", "DaysVent", "VentGT7days", "Days02",</pre>
```

2.3 Batch processing information

Since the article of Cohen *et al.* (2007) contains no information about the experimental design, we have taken the scanning date stored in the raw CEL files as surrogate for the possible processing of the samples into batches underlying the experimental design. We build the batch indicator variable using the time difference in days with respect to the earliest scanning date. Considering hybridizations closer in time together leads to three batch groups. This batch indicator variable becomes part of the phenotypic data stored in the *data.frame* GSE8586.pData:

```
> scanDate <- pData(protocolData(affyCELonly))$ScanDate</pre>
> scanDate <- gsub(" .*", "", scanDate)</pre>
> scanDate <- as.Date(scanDate, "%m/%d/%Y")</pre>
> batch <- scanDate - min(scanDate)</pre>
> sort(batch)
Time differences in days
           0
                                           33
                                              33
                                                   33
                                                        33 33
                                                                33
                                                                    35
                                                                                 35
 [1]
       0
               0
                   0 13
                           33
                               33
                                   33
                                       33
                                                                         35
                                                                             35
[20]
      35
          67
              67
                  67
                      67
                           67
                               76
                                   76
                                      76
                                          76
                                              76 76
                                                       82 82
                                                                82
                                                                    82
                                                                         89
                                                                             89
                                                                                 89
[39]
      89
          89
              95
                  95
                      95
                           95
                               95
                                   95 101 101 101 101 116 116 116 116
> batch <- cut(as.numeric(batch),c(-1,59,89,119))</pre>
> batch
                                                                       (-1, 59]
              (89,119] (59,89]
                                                             (-1, 59]
 [1] (59,89]
                                 (59, 89]
                                           (59, 89]
                                                    (-1, 59]
 [9] (-1, 59]
              (-1, 59]
                                 (-1, 59]
                                           (-1, 59]
                                                    (-1, 59]
                                                              (-1, 59]
                                                                       (59, 89]
                        (59, 89]
[17] (59,89]
              (59, 89]
                        (-1, 59]
                                 (59, 89]
                                          (-1, 59]
                                                    (89, 119]
                                                             (59, 89]
                                                                       (-1, 59]
[25] (-1,59]
              (89,119] (89,119]
                                (59,89]
                                           (-1, 59]
                                                    (59, 89]
                                                             (59, 89]
                                                                       (89, 119]
[33] (-1,59]
              (-1, 59]
                        (59,89]
                                 (89,119] (59,89]
                                                    (-1, 59]
                                                              (-1, 59]
                                                                       (89, 119]
[41] (-1,59]
              (59, 89]
                                 (89,119] (89,119] (89,119] (59,89]
                                                                       (89, 119]
                        (-1, 59]
[49] (89,119] (89,119] (59,89]
                                 (59, 89]
                                          (89,119] (59,89]
Levels: (-1,59] (59,89] (89,119]
> table(batch)
batch
 (-1, 59]
          (59,89] (89,119]
      20
               20
                         14
> batch <- as.numeric(batch)</pre>
> batch
 [39] 1 3 1 2 1 3 3 3 2 3 3 3 2 2 3 2
> GSE8586.pData$Batch <- batch
> table(GSE8586.pData$Batch)
 1 2 3
20 20 14
```

2.4 Addition of metadata

We build a *data.frame* object with the corresponding metadata information.

```
> GSE8586.Metadata.df <- data.frame(labelDescription = c(
    ## explanatory variables
```

```
"Internal link identity", "Batch indicator", "Body weight at birth",
    "Extremely low birth weight (< 1000gr.)",
    "Gestational Age (GA) in weeks", "GA greater or equal than 27 weeks", "Sex", "Sex is male",
    "Race is nonwhite",
    ## intermediate variables
    "Preterm labor", "Pregnancy induced hypertension", "Cesarean section",
    "Antenatal glucocorticoids", "Neutrophils in chorionic plate", "Neutrophils in chord",
    "Neutrophils only in plate",
    ## reponse variables
    "FIR/chorioamnionitis, i.e., neutrophils in chorionic plate and/or neutrophils in chord",
    "Presence of bronchopulmonary dysplasia", "Days of ventilation",
    "Days of ventilation greater than 7 days", "Days of supplemental oxygen",
    "Days of supplemental oxygen greater or equal than 28 days",
    "Grade of necrotizing enterocolitis", "Presence of necrotizing enterocolitis",
    "Presence of retinopathy of prematurity", "Presence of patent ductus arteriosus",
    "Presence of Sepsis", "Neutrophils only in cord", "Presence of intraventricular hemorrhage",
    "White matter abnormality (ventriculomegaly and/or echolucency) seen on head ultrasound while
    "Cerebral palsy diagnosis at age 2",
    "Bayley scales of infant development II, Mental development index < 70 at age 2",
    "Bayley scales of infant development II, Psychomotor development index < 70 at age 2"
    ), row.names=c(explanatoryVariables, intermediateVariables, responseVariables))
> stopifnot(rownames(GSE8586.Metadata.df) == colnames(GSE8586.pData)) ## QC
```

Finally, we combine the metadata information with the GSE8586.pData object into an Annotated-DataFrame object, that we add to the affyBatch object affyCELonly and store it into the file results/QA_dir/QA_affy.RData as an object called affy:

```
> GSE8586.phenoData <- new("AnnotatedDataFrame", data=GSE8586.pData,</pre>
```

varMetadata=GSE8586.Metadata.df)

```
> affy <- affyCELonly</pre>
```

```
> phenoData(affy) <- GSE8586.phenoData</pre>
```

```
> stopifnot(rownames(pData(protocolData(affy))) == rownames(pData(affy))) ## QC
```

```
> stopifnot(colnames(exprs(affy)) == rownames(pData(affy))) ## QC
```

```
> save(affy, file=file.path(cacheDir_QA, paste0(cachePrefix_QA, "affy.RData")))
```

2.5 Quality Assessment and normalization

The goal of the quality assessment (QA) is to identify, and eventually remove, samples resulting from low quality chips. As a first exploration of the expression data we look at the distribution of the raw intensity values in \log_2 scale, distinguishing samples by batch, shown in Figure 1.

We do not observe a correlation between batch and raw intensity distribution and while most of the samples have similar distribution a few of them have a distinctive shape from the rest, concretely GSM213079, GSM213094, GSM213090, GSM213073 from which we take note here:

We examine now the presence of intensity-dependence biases in the \log_2 values of raw intensity expression data by means of MA-plots. Their presence would be indicative of possible quality problems, although only after normalization has taken place this diagnostic is fully informative. We produced the MA-plots shown in Figures 2 and 3 removing control probes prior to calculating the plotted quantities.

Raw intensity distributions

Figure 1. Distributions of raw intensity values in \log_2 scale. In the bottom panel, distributions with a distinctive shape from the bulk of the data are labeled by the corresponding sample identifier.

Figure 2. MA-plots of the raw expression values for the first half of the samples.

Figure 3. MA-plots of the raw expression values for the second half of the samples.

The next exploration of the data consists of fitting a probe-level linear model (PLM) and using it to produce some QA diagnostics. We begin by fitting this model through the function fitPLM() from the oligo package.

```
> cache(plm <- fitPLM(affy), dir=cacheDir_QA, prefix=cachePrefix_QA)</pre>
```

The first QA diagnostic from PLM approach are the images of the residuals of the PLM which are shown in Figure 4. Samples showing a distinctive pattern of residuals with respect to the rest of the samples could arise from problems with the RNA source, hybridization or scanning of the corresponding microarray chip. We observe such a pattern in the following samples:

Figure 4. Images of the residuals of the probe-level model (PLM) per sample. Samples with a distinctive pattern of residuals have their identifier highlighted in red. 17

The third and fourth diagnostics are the Normalized Unscaled Standard Errors (NUSE) and the Relative Log Expression (RLE) plots (4), shown in Figure 5.

Figure 5. NUSE and RLE plots. Samples with abnormally high median NUSE value or abnormally interquartile range RLE value are indicated by red arrows.

These two diagnostics show problems with the following samples:

```
> ## rnkNUSE and rnkRLE are defined in the hidden code to produce the plots
> badSamplesNUSE <- sampleNames(plm)[rnkNUSE[1:7]]
> badSamplesNUSE
[1] "GSM213079" "GSM213073" "GSM213090" "GSM213094" "GSM213107" "GSM213081"
[7] "GSM213095"
> badSamplesRLE <- sampleNames(plm)[rnkRLE[1:6]]
> badSamplesRLE
[1] "GSM213079" "GSM213073" "GSM213090" "GSM213107" "GSM213094" "GSM213095"
```

We apply the recently developed frozen robust multichip analysis (fRMA) normalization algorithm (5) implemented in the function frma() from the frma to do background correction, quantile normalization and summarization of probe-level intensities into probeset-level expression values.

We perform MA-plots again on the *ExpressionSet* object to verify whether intensity-dependent biases observed in the raw expression intensity data have been removed. They are shown in Figures 6 and 7 and calculations have been made excluding Affymetrix control probesets. The following samples show still some degree of fRMA expression-level dependent bias:

2.6 Batch Effect identification

Using the batch effect indicator variable previously built on the basis of scanning dates stored in CEL files, we explore the distribution of samples in the primary outcome of interest (phenotypic variable FIR) across batches. An unbalanced distribution could lead to a confounding effect between batch and primary outcome. However, as shown in Table 1, the experimental design is balanced between FIR status and the batch indicator variable.

Table 1. Distribution of samples across batches (columns) and FIR status (rows).

	1	2	3
no	13	11	4
yes	5	9	6

Next, we examine how samples cluster together by the primary outcome of interest and by the batch indicator variable. In the top panel of Figure 8 we have the hierarchical clustering annotated by the batch indicator variable **Batch** while in the bottom panel we have a multidimensional scaling (MDS) plot.

The hierarchical clustering shows some tendency of samples from the same batch to cluster together. More importantly, some of the samples are very dissimilar to the rest, concretely, the following ones:

```
> sampleMainClusters <- cutree(sampleClustering, k=4)
> table(sampleMainClusters)
sampleMainClusters
1 2 3 4
45 7 1 1
> badSamplesHC <- names(sampleMainClusters)[sampleMainClusters > 1]
> badSamplesHC
[1] "GSM213073" "GSM213079" "GSM213090" "GSM213094" "GSM213095" "GSM213098"
[7] "GSM213104" "GSM213107" "GSM213121"
```

Analgously, the following samples in the MDS plot are very dissimilar to the rest:

```
> badSamplesMDS <- rownames(cmd)[cmd[, 1] < -0.05]
> badSamplesMDS
[1] "GSM213073" "GSM213079" "GSM213090" "GSM213095" "GSM213107"
```


Figure 6. MA-plots of the fRMA expression values for the first half of the samples. Samples with some sizeable degree of expression-level dependence have their identifier highlighted in red.

Figure 7. MA-plots of the fRMA expression values for the second half of the samples. Samples with some sizeable degree of expression-level dependence have their identifier highlighted in red.

Figure 8. Hierarchical clustering (top) and multidimensional scaling (bottom) plots of samples labeled by FIR status and colored batch indicator variable. Some samples are very dissimilar to the rest.

2.7 Summary of quality assessment diagnostics

We will build now a table summarizing the result of all diagnostics by flagging every bad diagnostic at every sample and rank the samples by summing all the failed diagnostics.

```
> qaDiagnostics <- data.frame(RawDist=rep(FALSE, ncol(frmaEsetAll)),</pre>
                               Resids=rep(FALSE, ncol(frmaEsetAll)),
                               NUSE=rep(FALSE, ncol(frmaEsetAll)),
                               RLE=rep(FALSE, ncol(frmaEsetAll)),
                               MA=rep(FALSE, ncol(frmaEsetAll)),
                               HC=rep(FALSE, ncol(frmaEsetAll)),
                               MDS=rep(FALSE, ncol(frmaEsetAll)),
                               Failed=rep(0, ncol(frmaEsetAll)))
> rownames(qaDiagnostics) <- sampleNames(frmaEsetAll)</pre>
> qaDiagnostics[badSamplesRawDist, "RawDist"] <- TRUE</pre>
> qaDiagnostics[badSamplesPLMresids, "Resids"] <- TRUE</pre>
> gaDiagnostics[badSamplesNUSE, "NUSE"] <- TRUE</pre>
> gaDiagnostics[badSamplesRLE, "RLE"] <- TRUE
> qaDiagnostics[badSamplesMAplot, "MA"] <- TRUE
> qaDiagnostics[badSamplesHC, "HC"] <- TRUE</pre>
> qaDiagnostics[badSamplesMDS, "MDS"] <- TRUE</pre>
> qaDiagnostics$Failed <- rowSums(qaDiagnostics)
> qaDiagnostics <- qaDiagnostics[order(qaDiagnostics$Failed, decreasing=TRUE), ]</p>
> head(qaDiagnostics, n=13)
          RawDist Resids
                          NUSE
                                  RLE
                                          MA
                                                HC
                                                     MDS Failed
GSM213073
             TRUE
                     TRUE
                           TRUE
                                 TRUE
                                        TRUE
                                              TRUE
                                                    TRUE
                                                               7
GSM213079
             TRUE
                     TRUE
                           TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                               7
                                                               7
GSM213090
             TRUE
                    TRUE
                          TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                    TRUE
                                                               6
GSM213107
            FALSE
                          TRUE
                                 TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
GSM213094
             TRUE
                     TRUE
                           TRUE
                                 TRUE FALSE
                                              TRUE FALSE
                                                               5
GSM213095
            FALSE
                   FALSE
                           TRUE
                                TRUE
                                       TRUE
                                              TRUE
                                                    TRUE
                                                               5
GSM213081
            FALSE
                    TRUE
                           TRUE FALSE
                                        TRUE FALSE FALSE
                                                               3
                                                               2
GSM213104
            FALSE
                   FALSE FALSE FALSE
                                       TRUE
                                              TRUE FALSE
GSM213098
            FALSE
                   FALSE FALSE FALSE FALSE
                                              TRUE FALSE
                                                               1
            FALSE
                    TRUE FALSE FALSE FALSE FALSE FALSE
GSM213110
                                                               1
            FALSE FALSE FALSE FALSE TRUE FALSE FALSE
GSM213112
                                                               1
GSM213114
            FALSE
                    TRUE FALSE FALSE FALSE FALSE FALSE
                                                               1
GSM213118
            FALSE
                     TRUE FALSE FALSE FALSE FALSE FALSE
                                                               1
```

The full ranking of samples is shown in Table 2 and in the light of this ranking we decide to discard the samples for which the majority of the diagnostics fail, i.e., more than 4, concretely the following ones:

```
> badSamples <- rownames(qaDiagnostics)[qaDiagnostics$Failed > (ncol(qaDiagnostics)-1)/2]
> badSamples
```

[1] "GSM213073" "GSM213079" "GSM213090" "GSM213107" "GSM213094" "GSM213095"

We normalize the data again excluding the selected samples:

This resulting normalized data set of 54675 features and 48 samples will be the one we use in the rest of the analysis. We check again in Table 3 below that the experimental design is still balanced with respect to the batch indicator variable and FIR status.

Table 2. Summary of quality assessment diagnostics for all microarray samples. Every row corresponds to a microarray sample and every column to a different diagnostic. Rows are ordered by the decreasing number of failed diagnostics indicated in the column "Failed". Samples which failed in more than half of the diagnostics have their identifiers highlighted in red and were discarded from further analysis. Diagnostics key: distribution of raw intensities (RawDist), residuals of a probe-level model (Resids), normalized unscaled standard errors (NUSE), relative log expression (RLE), MA plot (MA), hierarchical clustering (HC), multidimensional scaling (MDS).

	RawDist	Resids	NUSE	RLE	MA	HC	MDS	Failed
GSM213073	×	×	X	×	×	×	×	7
GSM213079	×	X	X	×	×	×	X	7
GSM213090	X	X	X	X	X	X	X	7
GSM213107		X	X	X	X	X	X	6
GSM213094	X	X	X	X		X		5
GSM213095			X	X	×	X	×	5
CSM213081		×	X		X			3
CSM212100	•	<u> </u>	· ·	· ·	~	×		0
GSM213104	· ·	· ·	v (· ·		<u></u>	· ·	2 1
GSM213096	•	× ×	· ·	· ·	×	$\hat{}$	· ·	1
G5M215110		^	×	- ×	 		×	1
GSM213112		✓ ✓	· ·	- ·	<u>^</u>	· ·		1
GSM213114		×			· ·			1
GSM213118		X				 		1
GSM213121						X		1
GSM213072	 Image: A start of the start of	 Image: A set of the set of the	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	0
GSM213074	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	0
GSM213075	 Image: A set of the set of the	 Image: A set of the set of the	-	 ✓ 	 Image: A set of the set of the	-	 ✓ 	0
GSM213076	 ✓ 	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	0
GSM213077	 ✓ 	 Image: A start of the start of	 Image: A set of the set of the	 ✓ 	 Image: A start of the start of	 Image: A second s	 ✓ 	0
GSM213078	 Image: A set of the set of the	 Image: A second s	 Image: A set of the set of the	 Image: A second s	 Image: A second s	 Image: A second s	 Image: A set of the set of the	0
GSM213080	 ✓ 	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the		0
GSM213082	 ✓ 	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A second s	 Image: A set of the set of the	0
GSM213083	 ✓ 	 Image: A set of the set of the	1	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	 ✓ 	0
GSM213084	 ✓ 	✓	1	 Image: A set of the set of the	 Image: A set of the set of the	1	 Image: A set of the set of the	0
GSM213085	 ✓ 	✓	1	 Image: A set of the set of the	 Image: A set of the set of the	1	 Image: A second s	0
GSM213086	 ✓ 	 Image: A second s	1	 Image: A second s	 Image: A set of the set of the	1	 Image: A second s	0
GSM213087	 ✓ 	 Image: A second s	1	 ✓ 	 Image: A set of the set of the	1	 ✓ 	0
GSM213088	 ✓ 	 Image: A set of the set of the	1	1	 Image: A set of the set of the	1	1	0
GSM213089	 ✓ 	 Image: A start of the start of	1	 Image: A start of the start of	 Image: A set of the set of the	1	 Image: A start of the start of	0
GSM213091	 ✓ 	 Image: A second s	1	 Image: A second s	 Image: A start of the start of	1	 ✓ 	0
GSM213092	 ✓ 	 Image: A second s	1	 	 Image: A start of the start of	 Image: A start of the start of	 ✓ 	0
GSM213093	 ✓ 	 Image: A second s	1	 ✓ 	 Image: A set of the set of the	1	1	0
GSM213096	 ✓ 	 Image: A set of the set of the	1	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A second s	0
GSM213097	 ✓ 	 Image: A second s	1	 Image: A start of the start of	 Image: A start of the start of	1	 ✓ 	0
GSM213099	1	 ✓ 	1	 ✓ 	 ✓ 	1	 ✓ 	0
GSM213100		1	1	1	1	1	1	0
GSM213101		1	1	1	1	1		0
GSM213102			1	1	1			0
GSM213103			1		1	1		0
GSM213105					1			0
GSM213106								0
GSM213108					-			0
GSM213109								0
GSM213111								0
GSM210111			-		•			0
GSM213115								0
GSM213115 GSM213116								0
GSM213117								0
CSM213117								0
CSM213119	•	•	• •		×			0
GSM213120								0
CSM212122	× /	•	×					0
CSM213123					×			0
CSM213124								0
G5M213125	 ✓ 	 ✓ 		 ✓ 	 Image: A set of the set of the	 ✓ 	 ✓ 	U

Table 3. Distribution of samples across batches (columns) and FIR status (rows). The batch indicator variable was derived on the basis of the microarray chip scanning timestemp.

	Batch	1	2	3
FIR				
No		12	10	3
Yes		3	9	6

2.8 Session Information

- > toLatex(sessionInfo())
- R version 3.1.3 (2015-03-09), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF8, LC_NUMERIC=C, LC_TIME=en_US.UTF8, LC_COLLATE=en_US.UTF8, LC_MONETARY=en_US.UTF8, LC_MESSAGES=en_US.UTF8, LC_PAPER=en_US.UTF8, LC_NAME=en_US.UTF8, LC_ADDRESS=en_US.UTF8, LC_TELEPHONE=en_US.UTF8, LC_MEASUREMENT=en_US.UTF8, LC_IDENTIFICATION=en_US.UTF8
- Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils
- Other packages: affy 1.44.0, affyPLM 1.42.0, annotate 1.44.0, AnnotationDbi 1.28.2, Biobase 2.26.0, BiocGenerics 0.12.1, DBI 0.3.1, frma 1.18.0, gcrma 2.38.0, genefilter 1.48.1, GenomeInfoDb 1.2.5, GEOquery 2.32.0, GO.db 3.0.0, hgu133plus2cdf 2.15.0, hgu133plus2.db 3.0.0, IRanges 2.0.1, limma 3.22.7, mgcv 1.8-6, nlme 3.1-120, org.Hs.eg.db 3.0.0, preprocessCore 1.28.0, RColorBrewer 1.1-2, rJava 0.9-6, RSQLite 1.0.0, S4Vectors 0.4.0, sva 3.12.0, xlsx 0.5.7, xlsxjars 0.6.1, XML 3.98-1.1, xtable 1.7-4
- Loaded via a namespace (and not attached): affxparser 1.38.0, affyio 1.34.0, BiocInstaller 1.16.4, Biostrings 2.34.1, bit 1.1-12, bitops 1.0-6, codetools 0.2-11, ff 2.2-13, foreach 1.4.2, GenomicRanges 1.18.4, grid 3.1.3, iterators 1.0.7, lattice 0.20-31, MASS 7.3-40, Matrix 1.2-0, oligo 1.30.0, oligoClasses 1.28.0, RCurl 1.95-4.5, splines 3.1.3, survival 2.38-1, tools 3.1.3, XVector 0.6.0, zlibbioc 1.12.0

3 Differential gene expression analysis

The aim of the differential expression (DE) analysis in this study is to identify genes that significantly change their expression between absence or presence of a fetal inflamatory response (FIR) as defined by the phenotypic variable FIR. Due to missing clinical data, the FIR status could not be established for some of the samples. For the purpose of this DE analysis we have to discard these samples. We start the analysis on the expression data which has been already normalized with fRMA.

```
> dim(frmaEset)
Features Samples
    54675    48
> frmaEset <- frmaEset[, !is.na(frmaEset$FIR)]
> dim(frmaEset)
Features Samples
    54675    43
```

We use the Bioconductor package limma (6) for DE analysis using linear models and moderated tstatistics. Throughout the forthcoming variants on this analysis we will use the following cutoffs on maximum FDR and minimum fold-change:

```
> FDRcutoff <- 0.01
> fcCutoff <- 1.5</pre>
```

3.1 Population study analysis

Before we start the DE analysis we study baseline characteristics of labor/mother and infants in relationship with the FIR indicator variable (neutrophils in plate and/or neutrophils in cord).

Table 4. Characteristics of labor and mother related to FIR. Number of infants whose birth matched the characteristics listed on the rows stratified by FIR outcome specified on the columns. Between parenthesis is given the percentage of infants with that characteristic over the total number of infants with the given FIR outcome. The P column gives the two-sided Fisher's exact *p*-value for the null hypothesis of no-association between characteristic and FIR outcome.

	Description	No FIR	FIR	Р
Nonwhite	Race is nonwhite	9(36.0%)	7(38.9%)	1.000
Ptl	Preterm labor	16~(64.0%)	8 (44.4%)	0.230
Pih	Pregnancy induced hypertension	4(16.0%)	$0 \ (0.0\%)$	0.127
Cs	Cesarean section	23~(92.0%)	9~(50.0%)	0.004
Acs	Antenatal glucocorticoids	14~(56.0%)	12~(66.7%)	0.541

The characteristics of labor and mother are summarized in Table 4. We proceed to analyse the characteristics of the infants.

```
> infantVar <- c("Elbw", "GaGE27weeks", "Male", "Bpd", "VentGT7days",</pre>
                  "O2GE28days", "NecEnt", "Rop", "Pda", "Sepsis",
                  "Ivh", "Wmd")
> infantDf <- cbind(Description=gsub("<", "$<$", varMetadata(frmaEset)[infantVar, ]),</pre>
                     as.data.frame(do.call("rbind",
                       lapply(pData(frmaEset)[, infantVar],
                         function(phe, outcome, absenceOutcome, presenceOutcome) {
                           xtab <- table(phe, outcome)</pre>
                           ft <- fisher.test(xtab)</pre>
                           outcomeOverVar <- c(sprintf("%d (%.1f\\%%)", xtab["yes", ],</pre>
                                                         100 * xtab["yes", ] / colSums(xtab)),
                                                 sprintf("%.3f", ft$p.value))
                           names(outcomeOverVar) <- c(absenceOutcome, presenceOutcome, "P")</pre>
                           outcomeOverVar
                         }, frmaEset$FIR, "No FIR", "FIR")),
                     stringsAsFactors=FALSE), stringsAsFactors=FALSE)
```

The characteristics of infants are summarized in Table 5.

We analyze resulting characteristics of infants, conditioned on the administration of antenatal glucocorticoids, which have been described as an effective therapy that improves neonatal outcome (7). The results are summarized in Table 6.

Table 5. Characteristics of infants related to FIR. Number of infants whose birth matched the characteristics listed on the rows stratified by FIR outcome specified on the columns. Between parenthesis is given the percentage of infants with that characteristic over the total number of infants with the given FIR outcome. The P column gives the two-sided Fisher's exact *p*-value for the null hypothesis of no-association between characteristic and FIR outcome.

	Description	No FIR	FIR	Р
Elbw	Extremely low birth weight ($<$	18 (72.0%)	8 (44.4%)	0.114
	1000gr.)			
GaGE27weeks	GA greater or equal than 27	14~(56.0%)	9~(50.0%)	0.763
	weeks			
Male	Sex is male	17~(68.0%)	10~(55.6%)	0.526
Bpd	Presence of bronchopulmonary	7~(28.0%)	6~(33.3%)	0.747
	dysplasia			
VentGT7days	Days of ventilation greater than	13~(52.0%)	5(29.4%)	0.208
	7 days			
O2GE28days	Days of supplemental oxygen	18~(72.0%)	12~(70.6%)	1.000
	greater or equal than 28 days			
NecEnt	Presence of necrotizing entero-	6(24.0%)	3~(16.7%)	0.712
	colitis			
Rop	Presence of retinopathy of pre-	11 (44.0%)	8~(47.1%)	1.000
	maturity			
Pda	Presence of patent ductus arte-	22~(88.0%)	10~(58.8%)	0.062
	riosus			
Sepsis	Presence of Sepsis	1 (4.0%)	2(11.8%)	0.556
Ivh	Presence of intraventricular hem-	3~(12.0%)	7 (38.9%)	0.067
	orrhage			
Wmd	White matter abnormality (ven-	2 (8.0%)	5(27.8%)	0.110
	triculomegaly and/or echolu-			
	cency) seen on head ultrasound			
	while the infant was in the NICU			

> infantVarOut <- c("Elbw", "GaGE27weeks", "Bpd", "NecEnt", "Rop", "Pda", "Sepsis", "Ivh", "Wmd" > infantAcsDf <- cbind(Description=gsub("<", "\$<\$", varMetadata(frmaEset)[infantVarOut,]),</pre>

```
as.data.frame(do.call("rbind",
```

```
lapply(pData(frmaEset)[, infantVarOut],
  function(phe, outcome, absenceOutcome, presenceOutcome,
           covariate, absenceCovariate, presenceCovariate) {
    xtab <- table(phe, outcome, covariate)</pre>
    xtabCovNo <- xtab[, , "no"]</pre>
    xtabCovYes <- xtab[, , "yes"]</pre>
    ftCovNo <- fisher.test(xtabCovNo)</pre>
    ftCovYes <- fisher.test(xtabCovYes)</pre>
    outcomePheCovNo <- c(sprintf("%d (%.1f\\%%)", xtabCovNo["yes", ],</pre>
                                    100 * xtabCovNo["yes", ] / colSums(xtal
                           sprintf("%.3f", ftCovNo$p.value))
    names(outcomePheCovNo) <- c(sprintf("%s|%s", absenceOutcome, absence
                                   sprintf("%s|%s", presenceOutcome, absenceOutcome
                                   "P")
    outcomePheCovYes <- c(sprintf("%d (%.1f\\%%)", xtabCovYes["yes", ],</pre>
                                     100 * xtabCovYes["yes", ] / colSums(xt
                           sprintf("%.3f", ftCovYes$p.value))
    names(outcomePheCovYes) <- c(sprintf("%s|%s", absenceOutcome, present</pre>
                                    sprintf("%s|%s", presenceOutcome, prese
                                    "P")
```

```
c(outcomePheCovNo, outcomePheCovYes)
}, frmaEset$FIR, "$\\neg$FIR", "FIR", frmaEset$Acs, "$\\neg$ACS", "ACS
stringsAsFactors=FALSE), stringsAsFactors=FALSE)
```

Table 6. Characteristics of infants related to FIR and conditioned on the administration of antenatal glucocortidcoids (ACS). Number of infants whose birth matched the characteristics listed on the rows stratified by FIR outcome specified on the columns. Between parenthesis is given the percentage of infants with that characteristic over the total number of infants with the FIR outcome given the ACS therapy. The P column gives the two-sided Fisher's exact *p*-value for the null hypothesis of no-association between characteristic and FIR outcome given ACS.

	Description	$\neg FIR \neg ACS$	FIR ¬ACS	Р	¬FIR ACS	FIR ACS	Р
Elbw	Extremely low	7~(63.6%)	3 (50.0%)	0.644	11 (78.6%)	5(41.7%)	0.105
	birth weight $(<$						
	1000gr.)						
GaGE27weeks	GA greater or equal	5~(45.5%)	3 (50.0%)	1.000	9(64.3%)	6 (50.0%)	0.692
	than 27 weeks						
Bpd	Presence of bron-	3~(27.3%)	2(33.3%)	1.000	4(28.6%)	4(33.3%)	1.000
	chopulmonary dys-						
	plasia						
NecEnt	Presence of necro-	3~(27.3%)	1 (16.7%)	1.000	3(21.4%)	2(16.7%)	1.000
	tizing enterocolitis						
Rop	Presence of	5~(45.5%)	3 (50.0%)	1.000	6 (42.9%)	5~(45.5%)	1.000
	retinopathy of						
	prematurity						
Pda	Presence of patent	10~(90.9%)	4 (66.7%)	0.515	12 (85.7%)	6(54.5%)	0.177
	ductus arteriosus						
Sepsis	Presence of Sepsis	1 (9.1%)	2(33.3%)	0.515	0 (0.0%)	$0 \ (0.0\%)$	1.000
Ivh	Presence of intra-	1 (9.1%)	5(83.3%)	0.005	2(14.3%)	2(16.7%)	1.000
	ventricular hemor-						
	rhage						
Wmd	White matter	1 (9.1%)	3 (50.0%)	0.099	1 (7.1%)	2(16.7%)	0.580
	abnormality (ven-						
	triculomegaly						
	and/or echolu-						
	cency) seen on						
	head ultrasound						
	while the infant						
	was in the NICU						

3.2 Non-specific filtering by functional features

Probesets for which there is no known gene annotated and chip control probesets cannot be directly used in any downstream functional analysis. For this reason we are going to remove these probesets from further analysis. Likewise, multiple probesets annotated to the same gene are, in principle, providing a redundant signal which may arise from different isoforms where only one of them is the one being expressed. In this case we want to remove probesets corresponding to duplicated gene annotations by keeping only one per gene, the one with largest variability measured by the interquartile range (IQR). For this purpose we use the function nsfilter() from the genefilter package as follows:

```
> dim(frmaEsetFilt)
```

Features Samples 20155 43

Since we have now a one to one correspondence between probesets and Entrez Gene identifiers, we replace the Affymetrix probeset identifiers in the *ExpressionSet* object by their Entrez Gene counterparts and update the **annotation** slot to the human organism-level annotation package in Bioconductor. Prior to this step, we store the selected Affymetrix probeset identifiers to keep track of what probesets finally participate in the analysis.

3.3 Estimation of hidden factors of expression heterogeneity

Expression data generally contains a substantial amount of heterogeneity due to a number of biological and non-biological sources of variability unrelated to the primary outcome of interest, which in our case is the FIR indicator variable FIR. To address this fact and adjust for these unknown confounders we run a surrogate variable analysis (SVA) among the top-10% of genes with largest variability, to estimate these unknown confounders and incorporate them into the linear model we fit with limma to the expression profile of each gene.

The SVA analysis estimates up to 7 surrogate variables that capture variability unrelated to the primary outcome of interest, the FIR indicator variable.

3.4 Non-specific filtering by variability

Genes that do not change significantly across the experimental condition of interest generally display little variability across samples. Therefore, a straightforward way to alleviate the multiple testing problem and augment the statistical power in a DE analysis is to filter out those genes with little variability. However, since the moderated *t*-statistics from limma are calculated using all available problemests, we calculate now the variability per problement to detect DE genes (8). To avoid measuring variability unrelated to our outcome of interest, we will calculate the IQR on the expression data after removing the effect of the batch and surrogate variables.

3.5 Differentially expressed gene calling

We perform the differential expression analysis using limma, fitting a linear model to each expression profile where the FIR indicator variable, the Batch indicator variable and the surrogate variables estimated with SVA are the explanatory variables acting as main effects.

We select different subsets of DE genes according to different thresholds on the non-specific filtering on expression variability. Within each non-specific filter, adjusted *p*-values by FDR are re-calculated.

In Figure 9 we have all different amounts of DE genes corresponding to each variability filter as well as the cumulative distribution of IQR values previously employed to define those filters. From that figure it follows that the most stringent filter that provides the largest number of DE genes is the one that discards 40% of the genes with lower variability defined in terms IQR values.

According to Figure 9 discarding the 40 genes with lower variability yields the highest number of DE genes (3896). Using this non-specific filter we re-adjust the raw p-values and obtain the final list of DE genes we will use in the rest of the analysis.

Differentially expressed genes w/ FDR < 1% after discarding $F_n(IQR)$ of all genes

Figure 9. Empirical cumulative distribution function (CDF) of interquartile range (IQR) values for all n = 20155 genes (black line) on the *y*-axis as function of IQR values specified on the bottom *x*-axis. Horizontal bars correspond to the number of differentially expressed (DE) genes (top *x*-axis) called at 1% FDR as function of $F_n(IQR)$, the empirical CDF in the *y*-axis. The empirical CDF $F_n(IQR)$ is employed to select the fraction of genes with lower variability to discard before doing the multiple test correction by FDR. Numbers inside bars indicate the precise value of the bar. In these data $F_n(IQR) = 30\%$ provides the highest statistical power to detect DE genes with FDR< 1%.

```
> DEgenes <- ttDEgenes$ID
> length(DEgenes)
[1] 1097
> stopifnot(DEgenes == ttDEgenes$ID) ## QC
```

Figure 10 shows a volcano plot highlighting the subset of 1097 genes called DE.

In Tables 7 and 8 we have the list of 592 and 505 significantly up and down regulated genes, respectively, between FIR and non-FIR infants.

Table 7. List of 592 significantly upregulated genes between FIR and nonFIR affected infants. Genes are ordered by absolute \log_2 fold-change in expression. Columns "LFC" and "FC" contain the fold-change in \log_2 and absolute scales, respectively. The column "P rnk" provides the rank of each gene by raw *p*-value within the entire list of 1097 genes called differentially expressed.

	Entrez ID	Symbol	Full name	LFC	FC	P value	P rnk
1	6279	S100A8	S100 calcium binding protein A8	5.03	32.7	3.0560e-13	17
2	5806	PTX3	pentraxin 3, long	4.19	18.2	1.4863e-12	24
3	6283	S100A12	S100 calcium binding protein A12	3.93	15.2	5.0176e-13	20
4	6280	S100A9	S100 calcium binding protein A9	3.82	14.1	2.7028e-14	5

Table 7 – continued from previous p	bage
-------------------------------------	------

5	6347	CCL2	chemokine (C-C motif) ligand 2	3.73	13.2	1.5112e-16	1
6	6374	CXCL5	chemokine (C-X-C motif) ligand 5	3.64	12.5	5.8123e-11	75
7	4069	LYZ	lysozyme	3.56	11.8	5.7026e-11	74
8	1116	CHI3L1	chitinase 3-like 1 (cartilage	3.46	11.0	1.6255e-09	182
0	2010	CYCI 1	abomolying (C.X.C. motif) ligand 1	2 29	10.0	6 11260 12	
9	2919	UAULI	(melanoma growth stimulating activity	3.32	10.0	0.11306-13	21
			alpha)				
10	2576	CYCLS	aprila) abometrine (C X C metif) ligand 8	2 21	0.0	2 87760 08	370
10	6372	CXCL6	chemokine (C-X-C motif) ligand 6	3.01	9.9	2.0110e-08	202
11	6648	SOD2	superovide dismutase 2 mitochondrial	2.06	9.5	1.00386-08	292
12	620	CEB	superoxide distillates 2, initochondria	2.90	7.7	1.2870e-12	46
10	10135	NAMPT	nicotinamide phosphoribosyltrans-	2.30	7.6	1.0079c-11 1.7379e-14	40
1.4	10155		ferase	2.30	1.0	1.75750-14	5
15	7850	IL1R2	interleukin 1 receptor, type II	2.80	7.0	4.6215e-10	114
16	597	BCL2A1	BCL2-related protein A1	2.60	6.1	2 2950e-09	202
17	7128	TNFAIP3	tumor necrosis factor alpha-induced	2.01 2.60	6.1	7 3964e-14	7
11	1120	11011111 U	protein 3	2.00	0.1	1.0001011	
18	240	ALOX5	arachidonate 5-lipoxygenase	2.55	5.9	5.0715e-11	72
19	3371	TNC	tenascin C	2.51	5.7	2.4620e-09	206
20	7130	TNFAIP6	tumor necrosis factor, alpha-induced	2.48	5.6	1.8018e-10	102
_0	.100		protein 6		0.0	100100 10	10-
21	5265	SERPINA1	serpin peptidase inhibitor, clade A	2.36	5.1	3.5532e-10	109
			(alpha-1 antiproteinase, antitrypsin),				
			member 1				
22	9173	IL1RL1	interleukin 1 receptor-like 1	2.19	4.6	7.9713e-06	829
23	960	CD44	CD44 molecule (Indian blood group)	2.14	4.4	4.4566e-09	237
24	199675	MCEMP1	mast cell-expressed membrane protein	2.08	4.2	3.8828e-11	56
		0.5.5.	1				
25	2878	GPX3	glutathione peroxidase 3 (plasma)	2.07	4.2	4.5739e-04	1059
26	5054	SERPINE1	serpin peptidase inhibitor, clade E	2.07	4.2	3.2195e-12	36
			(nexin, plasminogen activator inhibitor				
07	5749	DTCC9	type 1), member 1	2.04	4.1	0.0000-11	07
21	5745	P1G52	prostagiandin-endoperoxide synthase 2	2.04	4.1	8.00336-11	81
			(prostagiandin G/H synthase and cy-				
28	4220	MNDA	mucloid coll nuclear differentiation anti	2.04	4.1	2.46710.08	366
20	4552		anyeloid cell indclear differentiation anti-	2.04	4.1	2.40716-08	300
20	020	CD14	CD14 molecule	2.01	4.0	8 92970-10	147
30	6364	CCL20	chemokine (C-C motif) ligand 20	2.01 2.00	4.0	2.0482e-06	718
31	2920	CXCL2	chemokine (C-X-C motif) ligand 2	1.00	4.0	6.4042e-08	433
32	7412	VCAM1	vascular cell adhesion molecule 1	1.95	3.9	1.3349e-05	863
33	4067	LYN	LYN proto-oncogene Src family tyro-	1.90	3.8	4.5876e-10	113
00	1001		sine kinase	1.01	0.0	1.50100 10	110
34	5788	PTPRC	protein tyrosine phosphatase, receptor	1.93	3.8	7.8762e-10	141
			type, C				
$\overline{35}$	2921	CXCL3	chemokine (C-X-C motif) ligand 3	1.91	$3.\overline{8}$	1.4551e-06	685
36	5156	PDGFRA	platelet-derived growth factor receptor,	1.89	3.7	1.6472e-12	27
			alpha polypeptide				
37	2643	GCH1	GTP cyclohydrolase 1	1.89	3.7	6.9300e-09	267
38	5069	PAPPA	pregnancy-associated plasma protein A, pappalysin 1	1.89	3.7	8.4548e-10	144

39	3976	LIF	leukemia inhibitory factor	1.88	3.7	9.0824e-10	149
40	7127	TNFAIP2	tumor necrosis factor, alpha-induced	1.87	3.6	2.4667e-08	365
			protein 2				
41	1440	CSF3	colony stimulating factor 3 (granulo-	1.86	3.6	6.5639e-10	127
			cyte)				
42	9945	GFPT2	glutamine-fructose-6-phosphate	1.84	3.6	2.5789e-13	15
- 10	10.00		transaminase 2	1.0.1			
43	4982	TNFRSF11B	tumor necrosis factor receptor super-	1.84	3.6	8.7613e-11	88
4.4	2055	HOL	family, member 11b	1.00	0.0	7 1055 00	070
44	3055	HCK	HUK proto-oncogene, Src family tyro-	1.83	3.6	7.4955e-09	272
45	1420	CCEDDD	sine kinase	1.09	25	1 20250 00	160
40	1439	USF 2ND	tor both low effinity (grapulogyta	1.00	5.0	1.29556-09	109
			macrophaga)				
46	1475	CSTA	$\frac{\text{macrophage}}{\text{cystatin } A \text{ (stefin } A)}$	1.82	35	1 /27/0-09	174
40	3290	HSD11B1	hydroxysteroid (11-beta) dehydroge-	1.81	3.5	9.4514e-08	465
	0200	IIIIIII	nase 1	1.01	0.0	5.10110.00	100
48	5918	BARRES1	retinoic acid receptor responder	1.81	3.5	1.8282e-07	524
10	0010		(tazarotene induced) 1	1.01	0.0	1.02020 01	021
49	3557	IL1RN	interleukin 1 receptor antagonist	1.79	3.5	2.3623e-06	725
50	25884	CHRDL2	chordin-like 2	1.79	3.5	2.2190e-08	358
51	84419	C15orf48	chromosome 15 open reading frame 48	1.78	3.4	1.9603e-05	895
52	6402	SELL	selectin L	1.77	3.4	1.0587e-07	479
53	9235	IL32	interleukin 32	1.75	3.4	6.1226e-12	40
54	29923	HILPDA	hypoxia inducible lipid droplet-	1.73	3.3	1.5177e-08	319
			associated				
55	5473	PPBP	pro-platelet basic protein (chemokine	1.72	3.3	8.0501e-08	453
			(C-X-C motif) ligand 7)				
56	715	C1R	complement component 1, r subcompo-	1.71	3.3	1.7813e-12	29
			nent				
57	9021	SOCS3	suppressor of cytokine signaling 3	1.70	3.3	8.9597e-10	148
58	2180	ACSL1	acyl-CoA synthetase long-chain family	1.70	3.3	2.0251e-11	52
			member 1				
59	7037	TFRC	transferrin receptor	1.70	3.3	9.0516e-09	286
60	7357	UGCG	UDP-glucose ceramide glucosyltrans-	1.70	3.3	9.9466e-16	2
	1000	NGDa	ferase	1.00			
61	4688	NCF2	neutrophil cytosolic factor 2	1.68	3.2	6.9667e-07	623
62	2357	FPRI	formyl peptide receptor 1	1.68	3.2	3.5700e-11	54
63	3684	ITGAM	integrin, alpha M (complement compo-	1.68	3.2	9.8127e-08	468
C A	7076	TIMD1	TIMD metallementidese inhibiter 1	1.67	2.0	1 0946 12	11
04 65	2560		interleukin 6	1.07	<u> </u>	1.9840e-15	707
66	2015	FCCB3B	Fa fragment of IgC low affinity IIIb	1.00	3.2 2.1	0.3242e-00	200
00	2210	I CORD	receptor (CD16b)	1.00	0.1	5.44516-09	290
67	59269	HIVEP3	human immunodeficiency virus type I	1.65	3.1	2.0118e-08	345
01	00200		enhancer binding protein 3	1.00	0.1	2.01100-00	040
68	1326	MAP3K8	mitogen-activated protein kinase kinase	1 64	31	1 1202e-09	159
	1020		kinase 8	1.01	0.1	1.12020 00	100
69	79689	STEAP4	STEAP family member 4	1.64	3.1	1.1587e-08	299
70	1117	CHI3L2	chitinase 3-like 2	1.63	3.1	1.4136e-06	682
71	23516	SLC39A14	solute carrier family 39 (zinc trans-	1.62	3.1	2.2316e-13	13
			porter), member 14				

Table 7 – continued from previous page

		14	able i continued nom previous page				
72	4311	MME	membrane metallo-endopeptidase	1.62	3.1	2.3551e-08	362
73	2219	FCN1	ficolin (collagen/fibrinogen domain con-	1.62	3.1	3.7870e-08	391
			taining) 1				
74	3554	IL1R1	interleukin 1 receptor, type I	1.61	3.1	1.1987e-10	96
75	4318	MMP9	matrix metallopeptidase 9 (gelatinase	1.61	3.0	2.2601e-09	201
			B, 92kDa gelatinase, 92kDa type IV col-				
			lagenase)				
76	64332	NFKBIZ	nuclear factor of kappa light polypep-	1.60	3.0	3.0204e-12	34
			tide gene enhancer in B-cells inhibitor,				
			zeta				
77	133	ADM	adrenomedullin	1.60	3.0	1.1708e-06	664
78	5320	PLA2G2A	phospholipase A2, group IIA (platelets,	1.59	3.0	1.5613e-06	693
			synovial fluid)				
79	1520	CTSS	cathepsin S	1.58	3.0	6.1642e-07	617
80	7805	LAPTM5	lysosomal protein transmembrane 5	1.57	3.0	6.2766e-09	262
81	2268	FGR	FGR proto-oncogene. Src family tyro-	1.55	2.9	5.2624e-10	121
			sine kinase		-		
82	56729	RETN	resistin	1.55	2.9	1.7915e-09	186
83	602	BCL3	B-cell CLL/lymphoma 3	1.55	2.9	8.9480e-14	8
84	4542	MY01F	mvosin IF	1.54	2.9	9.9507e-11	92
85	1441	CSF3B	colony stimulating factor 3 receptor	1.54	2.9	1 9883e-08	344
00			(granulocyte)	1.01	2.0	1.00000 00	011
86	50486	G0S2	G0/G1 switch 2	1.54	29	1 4081e-07	505
87	3689	ITGB2	integrin beta 2 (complement compo-	1.51	2.9	6.6581e-08	437
01	0000	11002	nent 3 receptor 3 and 4 submit)	1.00	2.5	0.00010-00	101
88	79930	DOK3	docking protein 3	1 53	29	9.2441e-09	288
89	5552	SRGN	serglycin	1.50 1.52	2.9	1 1839e-09	164
00	7852	CXCB4	chemokine (C-X-C motif) receptor 4	1.02	$\frac{2.3}{2.8}$	3 4421 - 04	104
01	5320	PLAUR	plasminogen activator, urokinase recen-	1.51 1.50	$\frac{2.0}{2.8}$	9.9817 - 12	1040
31	0025	1 LHOIL	tor	1.50	2.0	5.20170-12	40
02	64002	SAMSN1	SAM domain SH3 domain and nuclear	1 50	2.8	7 35/20-07	625
32	04052		localization signals 1	1.50	2.0	1.00420-01	025
03	56000		ADAM metallopentidese with throm-	1 50	28	5 31050-11	73
50	00000		bospondin type 1 motif 9	1.00	2.0	0.01000-11	10
0/	5270	SERPINE2	serpin peptidese inhibitor clade E	1 /0	28	1 93350-09	10/
34	5210		(nexin plasminogen activator inhibitor	1.40	2.0	1.55550-05	1.54
			type 1) member 2				
95	27242	TNFRSF21	tumor necrosis factor receptor super-	1.48	2.8	3.6846e-09	229
50	21242	1111100121	family member 21	1.40	2.0	0.00400-00	225
96	7305	TYROBP	TVBO protein tyrosine kinase binding	1 47	2.8	6 3263e-08	429
50	1000	1 I I I I I I I I I I I I I I I I I I I	protein	1.11	2.0	0.02000-00	425
97	64581	CLEC7A	C-type lectin domain family 7 member	1 47	2.8	4 7277e-08	410
51	04001		Δ	1.11	2.0	4.12110-00	410
98	1890	TYMP	thymidine phosphorylase	1.46	2.8	2 4787e-13	14
00	1/0885	SIRPA	signal-regulatory protein alpha	1.40	$\frac{2.0}{2.7}$	8 3680e-11	85
100	5200	PFKFB3	6-phosphofructo-2-kinase/fructose-2.6-	1.40	$\frac{2.1}{2.7}$	6.0030e-09	255
100	5203	11111100	binhosnhatase 3	1.44	4.1	0.00000-09	200
101	3383	ICAM1	intercellular adhesion molecule 1	1 44	97	1 04330-00	157
101	728	C5AR1	complement component 52 recentor 1	1/12	2.1	2 9651 -07	557
102	54898	ELOVL2	ELOVI, fatty acid elongase 2	1 /19	2.1	6 24460-12	/1
104	11912	IBAK3	interleukin-1 recentor-associated kinaso	1 /19	2.1	1 26400-12	167
104	11210	110/11/0	3	1.44	4.1	1.20430-03	101
1		1					

Table 7 – continued from previous page

			1 10				
105	123	PLIN2	perilipin 2	1.39	2.6	1.0321e-07	476
106	3718	JAK3	Janus kinase 3	1.39	2.6	4.9021e-13	19
107	1052	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	1.39	2.6	9.1179e-10	150
108	51316	PLAC8	placenta-specific 8	1.38	2.6	9.1238e-08	462
109	6781	STC1	stanniocalcin 1	1.38	2.6	1.0412e-05	850
110	7133	TNFRSF1B	tumor necrosis factor receptor super- family, member 1B	1.37	2.6	2.3175e-09	203
111	727936	GXYLT2	glucoside xylosyltransferase 2	1.37	2.6	2.1940e-08	355
112	51129	ANGPTL4	angiopoietin-like 4	1.36	2.6	1.5731e-07	516
113	219972	MPEG1	macrophage expressed 1	1.36	2.6	3.0200e-06	748
114	6286	S100P	S100 calcium binding protein P	1.36	2.6	1.6657e-05	880
115	8972	MGAM	maltase-glucoamylase (alpha- glucosidase)	1.36	2.6	8.6381e-08	458
116	6653	SORL1	sortilin-related receptor, L(DLR class)	1.36	2.6	1.0532e-06	654
			A repeats containing				
117	4084	MXD1	MAX dimerization protein 1	1.36	2.6	1.4538e-08	315
118	23514	SPIDR	scaffolding protein involved in DNA repair	1.35	2.6	4.7056e-11	67
119	330	BIRC3	baculoviral IAP repeat containing 3	1.35	2.5	5.2686e-06	795
120	24145	PANX1	pannexin 1	1.35	2.5	6.3084e-10	126
121	11027	LILRA2	leukocyte immunoglobulin-like recep-	1.34	2.5	2.4986e-09	207
			tor, subfamily A (with TM domain), member 2				
122	290	ANPEP	alanyl (membrane) aminopeptidase	1.34	2.5	5.0953e-08	415
123	2207	FCER1G	Fc fragment of IgE, high affinity I, re-	1.32	2.5	5.7669e-08	422
			ceptor for; gamma polypeptide				
124	1827	RCAN1	regulator of calcineurin 1	1.32	2.5	8.4228e-09	280
125	2124	EVI2B	ecotropic viral integration site 2B	1.32	2.5	7.6602e-06	824
126	4689	NCF4	neutrophil cytosolic factor 4, 40kDa	1.32	2.5	8.9140e-10	146
127	11151	CORO1A	coronin, actin binding protein, 1A	1.32	2.5	9.5430e-10	152
128	7078	TIMP3	TIMP metallopeptidase inhibitor 3	1.31	2.5	5.3421e-07	607
129	729230	CCR2	chemokine (C-C motif) receptor 2	1.31	2.5	4.2369e-05	940
130	9535	GMFG	glia maturation factor, gamma	1.31	2.5	3.7306e-09	231
131	51279	CIRL	complement component 1, r subcomponent-like	1.30	2.5	1.3345e-08	309
132	5055	SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	1.30	2.5	2.8186e-04	1031
133	9536	PTGES	prostaglandin E synthase	1.30	2.5	3.0955e-08	385
134	10288	LILRB2	leukocyte immunoglobulin-like recep- tor, subfamily B (with TM and ITIM domains), member 2	1.29	2.5	2.1388e-08	348
135	6401	SELE	selectin E	1.29	2.4	4.3298e-04	1056
136	7057	THBS1	thrombospondin 1	1.27	2.4	2.4122e-09	205
137	54541	DDIT4	DNA-damage-inducible transcript 4	1.27	2.4	3.0755e-06	751
138	23601	CLEC5A	C-type lectin domain family 5, member A	1.27	2.4	2.0302e-07	531
139	6303	SAT1	spermidine/spermine N1- acetyltransferase 1	1.26	2.4	2.9119e-09	216
140	5880	RAC2	ras-related C3 botulinum toxin sub- strate 2 (rho family, small GTP binding protein Bac2)	1.25	2.4	2.9295e-09	217

Table 7 – continued from previous page

141 19 ABCA1 ATP-binding cassette, sub-family A 1.25 2.4 6.7423e-10 142 716 C1S complement component 1, s subcomponent 1, s s s s s s s s s s s s s s s s s s			10	able 7 continued from previous page				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	141	19	ABCA1	ATP-binding cassette, sub-family A	1.25	2.4	6.7423e-10	128
142 143 366 AQP9 aquaporin 9 1.23 2.4 4.3732e10 144 1306 AQP9 aquaporin 9 1.23 2.4 2.3158e07 144 1301 COLL1A1 colagen, type XI, lapha 1 1.23 2.3 6.4800e.09 145 5359 PLSCR1 phospholipid scramblase 1 1.23 2.3 6.4800e.09 146 3937 LCP2 lymphocyte cytosolic protein 2 (SH2 1.22 2.3 1.2600e-08 147 6850 SYK splcen tyrosine kinase 1.22 2.3 1.2740e-06 148 4501 MT1X metalion transporter), member 1.22 2.3 1.9222e-07 150 6515 SLC2A3 solute carrier family 2 (facilitated glu- 1.22 2.3 1.9222e-07 151 397 ARHGDIB Rho GDP dissociation inhibitor (GDI) 1.21 2.3 1.0152e-07 152 25801 GCA grancalcin, EP-hand calcium binding 1.21 2.3 1.0152e-07 <	149	716	C1S	(ADC1), member 1 complement component 1 s subcompo	1.95	2.4	4 07320 10	116
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	142	/10	015	nent	1.20	2.4	4.97520-10	110
	143	366	AQP9	aquaporin 9	1.23	2.4	2.3158e-07	541
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	144	1301	COL11A1	collagen, type XI, alpha 1	1.23	2.3	2.7346e-06	738
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	145	5359	PLSCR1	phospholipid scramblase 1	1.23	2.3	6.4080e-09	265
	146	3937	LCP2	lymphocyte cytosolic protein 2 (SH2	1.22	2.3	6.2864e-05	960
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				domain containing leukocyte protein of 76kDa)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	147	6850	SYK	spleen tyrosine kinase	1.22	2.3	1.2600e-08	304
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	148	4501	MT1X	metallothionein 1X	1.22	2.3	1.1749e-06	666
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	149	6556	SLC11A1	solute carrier family 11 (proton-coupled	1.22	2.3	4.9878e-08	414
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				divalent metal ion transporter), mem-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ber 1				
cose transporter), member 3 cose transporter), member 3 151 397 ARHGDIB Rho GDP dissociation inhibitor (GDI) 1.21 2.3 1.7325e-09 152 25801 GCA grancalcin, EF-hand calcium binding 1.21 2.3 1.0152e-07 153 120425 AMICA1 adhesion molecule, interacts with CX- 1.21 2.3 5.6137e-08 154 3772 KCNJ15 potassium inwardly-rectifying channel, subfamily J, member 15 1.21 2.3 2.6131e-07 155 9180 OSMR <oncore m="" oncostatin="" receptor<="" td="" the=""> 1.21 2.3 1.8432e-09 156 7378 UPP1 uridine phosphorylase 1 1.21 2.3 1.6467e-06 157 2532 ACKR1 atypical chemokine receptor 1 (Duffy 1.21 2.3 1.4504e-10 158 10562 OLFM4 olfactomedin 4 1.20 2.3 1.5139e-04 160 1043 CD52 CD52 molecule 1.20 2.3 1.5139e-04 161 3037 HAS2 hyaluronan synthase 2</oncore>	150	6515	SLC2A3	solute carrier family 2 (facilitated glu-	1.22	2.3	1.9222e-07	527
151 397 ARHGDIB Rho GDP dissociation inhibitor (GDI) 1.21 2.3 1.7325e-09 152 25801 GCA grancalcin, EF-hand calcium binding 1.21 2.3 1.0152e-07 153 120425 AMICA1 adhesion molecule, interacts with CX- 1.21 2.3 5.6137e-08 154 3772 KCNJ15 potassium inwardly-rectifying channel, 1.21 2.3 2.6131e-07 155 9180 OSMR oncostatin M receptor 1.21 2.3 1.8432e-09 156 7378 UPP1 uridine phosphorylase 1 1.21 2.3 1.2467e-06 157 2532 ACKR1 atypical chemokine receptor 1 (Duffy 1.21 2.3 1.246e-04 158 10562 OLFM4 olfactomedin 4 1.20 2.3 3.2296e-04 159 115123 MARCH3 membrane-associated ring finger 1.20 2.3 1.2498e-06 161 3037 HAS2 hyaluronan synthase 2 1.20 2.3 1.2498e-06 163 128346 Clorf162 chromosome 1 open reading frame 162 1.				cose transporter), member 3				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	151	397	ARHGDIB	Rho GDP dissociation inhibitor (GDI) beta	1.21	2.3	1.7325e-09	184
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	152	25801	GCA	grancalcin, EF-hand calcium binding protein	1.21	2.3	1.0152e-07	473
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	153	120425	AMICA1	adhesion molecule, interacts with CX-	1.21	2.3	5.6137e-08	421
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	154	3772	KCNJ15	notassium inwardly-rectifying channel	1 21	2.3	2.6131e-07	549
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	101	0112	11011010	subfamily J. member 15	1.21	2.0	2.01010 01	010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	155	9180	OSMR	oncostatin M receptor	1.21	2.3	1.8432e-09	188
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	156	7378	UPP1	uridine phosphorylase 1	1.21	2.3	6.2550e-10	124
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	157	2532	ACKR1	atypical chemokine receptor 1 (Duffy	1.21	2.3	1.0467e-06	653
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				blood group)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	158	10562	OLFM4	olfactomedin 4	1.20	2.3	3.2296e-04	1041
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	159	115123	MARCH3	membrane-associated ring finger	1.20	2.3	1.4504e-10	99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(C3HC4) 3, E3 ubiquitin protein ligase				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	1043	CD52	CD52 molecule	1.20	2.3	1.5139e-04	1007
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	161	3037	HAS2	hyaluronan synthase 2	1.20	2.3	1.2493e-06	671
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	162	2321	FLT1	fms-related tyrosine kinase 1	1.20	2.3	2.1533e-08	350
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	163	128346	C1orf162	chromosome 1 open reading frame 162	1.19	2.3	1.0796e-07	480
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	164	10261	IGSF6	immunoglobulin superfamily, member 6	1.19	2.3	1.0914e-06	656
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	165	55022	PID1	phosphotyrosine interaction domain containing 1	1.19	2.3	1.9257e-08	342
167 2152 F3 coagulation factor III (thromboplastin, tissue factor) 1.19 2.3 1.1455e-09 168 57126 CD177 CD177 molecule 1.18 2.3 1.6232e-08 169 55784 MCTP2 multiple C2 domains, transmembrane 2 1.18 2.3 3.1566e-09 170 3385 ICAM3 intercellular adhesion molecule 3 1.17 2.2 7.1569e-08 171 7940 LST1 leukocyte specific transcript 1 1.17 2.2 6.3543e-09 172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 dioxygenase 2 10468 FST follistatin 1.16 2.2 2.9733e.05	166	27286	SRPX2	sushi-repeat containing protein, X- linked 2	1.19	2.3	1.0262e-07	475
168 57126 CD177 CD177 molecule 1.18 2.3 1.6232e-08 169 55784 MCTP2 multiple C2 domains, transmembrane 2 1.18 2.3 3.1566e-09 170 3385 ICAM3 intercellular adhesion molecule 3 1.17 2.2 7.1569e-08 171 7940 LST1 leukocyte specific transcript 1 1.17 2.2 6.3543e-09 172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 dioxygenase 2 10468 FST follistatin 1.16 2.2 2.9733e.05	167	2152	F3	coagulation factor III (thromboplastin, tissue factor)	1.19	2.3	1.1455e-09	160
169 55784 MCTP2 multiple C2 domains, transmembrane 2 1.18 2.3 3.1566e-09 170 3385 ICAM3 intercellular adhesion molecule 3 1.17 2.2 7.1569e-08 171 7940 LST1 leukocyte specific transcript 1 1.17 2.2 6.3543e-09 172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 174 10468 FST follistatin 1.16 2.2 2.9733e.05	168	57126	CD177	CD177 molecule	1 1 8	2.3	1 6232e-08	325
170 3385 ICAM3 intercellular adhesion molecule 3 1.17 2.2 7.1569e-08 171 7940 LST1 leukocyte specific transcript 1 1.17 2.2 6.3543e-09 172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 174 10468 FST follistatin 1.16 2.2 2.9733e-05	169	55784	MCTP2	multiple C2 domains transmembrane 2	1 18	2.3	3 1566e-09	224
171 7940 LST1 leukocyte specific transcript 1 1.17 2.2 6.3543e-09 172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 174 10468 FST follistatin 1.16 2.2 2.9733c.05	170	3385	ICAM3	intercellular adhesion molecule 3	1 17	2.2	7.1569e-08	444
172 3310 HSPA6 heat shock 70kDa protein 6 (HSP70B') 1.16 2.2 2.2941e-07 173 5352 PLOD2 procollagen-lysine, 2-oxoglutarate 5- 1.16 2.2 2.1215e-10 174 10468 FST follistatin 1.16 2.2 2.0733c.05	171	7940	LST1	leukocyte specific transcript 1	1.17	2.2	6.3543e-09	263
1735352PLOD2procollagen-lysine, 2-oxoglutarate5-1.162.22.1215e-1017410468FSTfollistatin1.162.22.0733c.05	172	3310	HSPA6	heat shock 70kDa protein 6 (HSP70B')	1.16	2.2	2.2941e-07	540
174 10468 FST follistatin 116 2.2 2.0733o.05	173	5352	PLOD2	procollagen-lysine, 2-oxoglutarate 5-	1.16	2.2	2.1215e-10	105
174 10468 FST follistatin 116 2.2 207330.05				dioxygenase 2				
	174	10468	FST	follistatin	1.16	2.2	2.9733e-05	922

Table 7 – continued from previous page
			able 7 continued norm previous page				
175	118788	PIK3AP1	phosphoinositide-3-kinase adaptor pro-	1.16	2.2	1.0112e-07	470
			tein 1				
176	604	BCL6	B-cell CLL/lymphoma 6	1.16	2.2	3.6837e-08	389
177	5618	PRLR	prolactin receptor	1.16	2.2	6.0810e-06	803
178	51311	TLR8	toll-like receptor 8	1.15	2.2	4.1359e-07	585
179	84935	MEDAG	mesenteric estrogen-dependent adipo-	1.15	2.2	1.1816e-07	489
			genesis				
180	5791	PTPRE	protein tyrosine phosphatase, receptor	1.15	2.2	4.6040e-07	594
			type, E				
181	7422	VEGFA	vascular endothelial growth factor A	1.15	2.2	4.9246e-09	242
182	22936	ELL2	elongation factor, RNA polymerase II,	1.14	2.2	1.5323e-07	515
			2				
183	22822	PHLDA1	pleckstrin homology-like domain, fam-	1.14	2.2	9.1469e-09	287
			ily A, member 1				
184	25939	SAMHD1	SAM domain and HD domain 1	1.14	2.2	2.1132e-05	899
185	92610	TIFA	TRAF-interacting protein with	1.14	2.2	2.2634e-07	538
			forkhead-associated domain				
186	1604	CD55	CD55 molecule, decay accelerating fac-	1.14	2.2	2.1715e-08	351
			tor for complement (Cromer blood				
			group)				
187	3099	HK2	hexokinase 2	1.13	2.2	4.3432e-07	589
188	29887	SNX10	sorting nexin 10	1.13	2.2	3.5355e-06	765
189	1230	CCR1	chemokine (C-C motif) receptor 1	1.13	2.2	6.1110e-06	804
190	10560	SLC19A2	solute carrier family 19 (thiamine trans-	1.13	2.2	3.6151e-09	228
			porter), member 2				
191	1806	DPYD	dihydropyrimidine dehydrogenase	1.13	2.2	3.4360e-05	933
192	54518	APBB1IP	amyloid beta (A4) precursor protein-	1.13	2.2	8.2492e-08	454
			binding, family B, member 1 interact-				
			ing protein				
193	79887	PLBD1	phospholipase B domain containing 1	1.12	2.2	1.9152e-07	526
194	6696	SPP1	secreted phosphoprotein 1	1.12	2.2	2.7098e-06	737
195	272	AMPD3	adenosine monophosphate deaminase 3	1.12	2.2	9.0149e-09	285
196	113730	KLHDC7B	kelch domain containing 7B	1.12	2.2	7.1421e-10	135
197	963	CD53	CD53 molecule	1.12	2.2	2.6948e-06	735
198	4502	MT2A	metallothionein 2A	1.11	2.2	3.6425e-08	388
199	1545	CYP1B1	cytochrome P450, family 1, subfamily	1.11	2.2	8.0221e-05	973
200		TI TA D	B, polypeptide 1	1.00	1	1 0 0 0 0 0 0	
200	9589	WTAP	Wilms tumor I associated protein	1.09	2.1	1.0299e-06	652
201	9332	CD163	CD163 molecule	1.09	2.1	5.0446e-05	948
202	2212	FCGR2A	Fc fragment of IgG, low affinity IIa, re-	1.09	2.1	8.2286e-06	832
202		CLMD	ceptor (CD32)	1.00	0.1	a 1005 00	050
203	79827	CLMP	CXADR-like membrane protein	1.08	2.1	6.1027e-09	256
204	3553	ILIB	interleukin I, beta	1.08	2.1	5.6223e-07	611
205	718		complement component 3	1.08	2.1	2.5218e-05	914
206	81704	DOCK8	dedicator of cytokinesis 8	1.07	2.1	3.2903e-04	1042
207	6581	SLC22A3	solute carrier family 22 (organic cation	1.07	2.1	3.3285e-09	226
0.00	0.410.0		transporter), member 3	1	0.1	1.0005 00	101
208	84106	PRAM1	PML-RARA regulated adaptor	1.07	2.1	1.9035e-09	191
000	1005		molecule 1	1.05	0.1	9.1071.00	1000
209	1805	DPT	dermatopontin	1.07	2.1	3.1671e-03	1096
210	8870	IER3	immediate early response 3	1.07	2.1	1.8198e-10	103

Table 7 – continued from previous page

		10	able 7 continued nom previous page				
211	241	ALOX5AP	arachidonate 5-lipoxygenase-activating	1.07	2.1	2.4133e-06	727
			protein				
212	6503	SLA	Src-like-adaptor	1.06	2.1	8.2381e-09	278
213	11182	SLC2A6	solute carrier family 2 (facilitated glu-	1.06	2.1	1.7941e-08	338
211	10.05		cose transporter), member 6	1.05			
214	4837	NNMT	nicotinamide N-methyltransferase	1.05	2.1	8.4249e-11	86
215	9123	SLC16A3	solute carrier family 16 (monocarboxy-	1.05	2.1	5.6118e-09	248
		015 5 5 5	late transporter), member 3				
216	2752	GLUL	glutamate-ammonia ligase	1.05	2.1	4.5249e-06	782
217	83706	FERMT3	fermitin family member 3	1.04	2.1	9.3892e-10	151
218	12	SERPINA3	serpin peptidase inhibitor, clade A	1.04	2.1	3.7920e-08	392
			(alpha-1 antiproteinase, antitrypsin),				
210) (DD	member 3	1.0.1	2.1		
219	4155	MBP	myelin basic protein	1.04	2.1	2.0766e-07	533
220	2123	EV12A	ecotropic viral integration site 2A	1.04	2.1	2.8809e-05	920
221	51312	SLC25A37	solute carrier family 25 (mitochondrial	1.04	2.0	1.8438e-06	707
000	0101	11120	iron transporter), member 37	1.00	2.0	0.0010 10	101
222	3101	HK3	hexokinase 3 (white cell)	1.03	2.0	6.8310e-10	131
223	23213	SULF1	sulfatase 1	1.03	2.0	2.5348e-08	368
224	10673	TNFSF13B	tumor necrosis factor (ligand) super-	1.03	2.0	2.8841e-06	744
			family, member 13b	1.0.0			
225	64333	ARHGAP9	Rho GTPase activating protein 9	1.03	2.0	1.3472e-08	311
226	81671	VMP1	vacuole membrane protein 1	1.03	2.0	1.4457e-05	869
227	10630	PDPN	podoplanin	1.03	2.0	1.2743e-08	306
228	1051	CEBPB	CCAAT/enhancer binding protein	1.03	2.0	5.0076e-10	117
			(C/EBP), beta	1.0.0			
229	84708	LNX1	ligand of numb-protein X 1, E3 ubiqui-	1.02	2.0	5.4001e-07	608
			tin protein ligase	1.0.0			
230	4651	MYO10	myosin X	1.02	2.0	4.6749e-11	66
231	3659	IRF1	interferon regulatory factor 1	1.02	2.0	2.9628e-07	556
232	222487	GPR97	G protein-coupled receptor 97	1.02	2.0	7.7835e-09	275
233	257106	ARHGAP30	Rho GTPase activating protein 30	1.02	2.0	9.2872e-08	464
234	60675	PROK2	prokineticin 2	1.02	2.0	1.1824e-05	856
235	5971	RELB	v-rel avian reticuloendotheliosis viral	1.01	2.0	1.6377e-09	183
0.0.0	1100	N/D1II	oncogene homolog B	1.01	2.0	0.0000.07	505
236	4496	MTIH	metallothionein IH	1.01	2.0	3.3999e-07	567
237	10095	ARPCIB	actin related protein 2/3 complex, sub-	1.01	2.0	1.1807e-10	95
000	00.10	TANTT	unit IB, 41kDa	1.01	2.0	0.0107 OF	0.00
238	8942	KYNU TN(FN(71	kynureninase	1.01	2.0	6.8167e-05	966
239	137835	TMEM71	transmembrane protein 71	1.01	2.0	2.8359e-05	919
240	5341	PLEK	pleckstrin	1.00	2.0	7.8477e-08	450
241	57758	SCUBE2	signal peptide, CUB domain, EGF-like	1.00	2.0	6.3681e-08	430
0.40	0100	EDI M4		1.00	2.0	F 1500 05	005
242	2192	FBLNI	fibulin 1	1.00	2.0	5.1500e-07	605
243	80149	ZC3H12A	zinc finger CCCH-type containing 12A	1.00	2.0	1.9623e-09	195
244	25975	EGFL6	EGF-like-domain, multiple 6	1.00	2.0	9.3219e-04	1077
245	1809	DPYSL3	dinydropyrimidinase-like 3	0.99	2.0	5.2704e-07	606
246	55332	DRAM1	DNA-damage regulated autophagy	0.99	2.0	2.7371e-08	374
0.17	20020		modulator 1	0.00	0.0		10-0
247	50856	CLEC4A	C-type lectin domain family 4, member	0.99	2.0	7.6848e-04	1070
0.10	6000			0.00	0.0	4.0055.05	600
248	6999	1002	tryptophan 2,3-dioxygenase	0.99	2.0	4.9057e-07	602

Table 7 – continued from previous page

249	54102	CLIC6	chloride intracellular channel 6	0.99	2.0	1.8407e-06	705
250	3934	LCN2	lipocalin 2	0.99	2.0	8.4476e-06	833
251	6446	SGK1	serum/glucocorticoid regulated kinase	0.98	2.0	4.5917e-08	409
252	642273	FAM110C	family with sequence similarity 110, member C	0.98	2.0	5.4506e-06	799
253	8935	SKAP2	src kinase associated phosphoprotein 2	0.98	2.0	1.5571e-04	1009
254	146722	CD300LF	CD300 molecule-like family member f	0.98	2.0	3.1559e-06	755
255	3486	IGFBP3	insulin-like growth factor binding pro- tein 3	0.98	2.0	8.2929e-05	978
256	1311	COMP	cartilage oligomeric matrix protein	0.98	2.0	4.4003e-05	943
257	969	CD69	CD69 molecule	0.98	2.0	3.2163e-03	1097
258	54210	TREM1	triggering receptor expressed on myeloid cells 1	0.98	2.0	4.2099e-08	402
259	4792	NFKBIA	nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor, alpha	0.97	2.0	6.3246e-08	428
260	7421	VDR	vitamin D (1,25- dihydroxyvitamin D3) receptor	0.97	2.0	3.3768e-07	566
261	80183	KIAA0226L	KIAA0226-like	0.97	2.0	6.9787e-06	817
262	25953	PNKD	paroxysmal nonkinesigenic dyskinesia	0.97	2.0	7.3820e-09	270
263	79180	EFHD2	EF-hand domain family, member D2	0.97	2.0	1.6337e-08	326
264	4791	NFKB2	nuclear factor of kappa light polypep- tide gene enhancer in B-cells 2 (p49/p100)	0.97	2.0	5.1431e-07	604
265	117247	SLC16A10	solute carrier family 16 (aromatic amino acid transporter), member 10	0.97	2.0	3.2797e-06	760
266	2769	GNA15	guanine nucleotide binding protein (G protein), alpha 15 (Gq class)	0.96	1.9	2.1395e-08	349
267	6004	RGS16	regulator of G-protein signaling 16	0.96	1.9	5.1065e-06	792
268	3587	IL10RA	interleukin 10 receptor, alpha	0.95	1.9	9.2274e-07	644
269	7462	LAT2	linker for activation of T cells family, member 2	0.95	1.9	5.7693e-07	614
270	121512	FGD4	FYVE, RhoGEF and PH domain con- taining 4	0.95	1.9	2.5551e-06	731
271	4494	MT1F	metallothionein 1F	0.95	1.9	5.9469e-07	616
272	9766	KIAA0247	KIAA0247	0.95	1.9	6.8377e-11	77
273	168455	CCDC71L	coiled-coil domain containing 71-like	0.95	1.9	8.7905e-09	284
274	85027	SMIM3	small integral membrane protein 3	0.94	1.9	1.6543e-08	329
275	4015	LOX	lysyl oxidase	0.94	1.9	1.0097e-05	846
276	8875	VNN2	vanin 2	0.94	1.9	5.6355e-09	249
277	4495	MT1G	metallothionein 1G	0.94	1.9	2.3848e-07	543
278	4257	MGST1	microsomal glutathione S-transferase 1	0.93	1.9	1.8919e-05	891
279	1512	CTSH	cathepsin H	0.93	1.9	1.3572e-05	864
280	645745	MT1HL1	metallothionein 1H-like 1	0.93	1.9	3.9127e-07	581
281	10318	TNIP1	TNFAIP3 interacting protein 1	0.93	1.9	1.4792e-09	177
282	3696	ITGB8	integrin, beta 8	0.93	1.9	2.7359e-05	918
283	8673	VAMP8	vesicle-associated membrane protein 8	0.93	1.9	3.8388e-07	578
284	58475	MS4A7	membrane-spanning 4-domains, sub- family A, member 7	0.93	1.9	2.9340e-04	1034
285	83593	RASSF5	Ras association (RalGDS/AF-6) do- main family member 5	0.93	1.9	$1.268\overline{2e-06}$	672

Table 7 – continued from previous page

		1	able r – continued nom previous page				
286	5771	PTPN2	protein tyrosine phosphatase, non-	0.93	1.9	1.4067e-07	504
287	8553	BHLHE40	basic helix-loop-helix family, member	0.92	1.9	4.5887e-06	784
100	64850		e40	0.02	1.0	4 66040 06	700
200	6404	SELDI C	soloctin D ligond	0.92	1.9	4.0004e-00	510
209	2610		selectini i ligaliu	0.92	1.9	1.47440-07	405
290	2019	I CD1	growth arrest-specific 1	0.92	1.9	1.33060-07	495
291	3930		plastin)	0.92	1.9	4.21876-00	110
292	124460	SNX20	sorting nexin 20	0.92	1.9	1.4891e-07	511
293	8741	TNFSF13	tumor necrosis factor (ligand) super- family, member 13	0.91	1.9	9.0116e-07	641
294	4778	NFE2	nuclear factor, erythroid 2	0.91	1.9	2.2374e-06	722
295	912	CD1D	CD1d molecule	0.91	1.9	6.6788e-06	812
296	10221	TRIB1	tribbles pseudokinase 1	0.91	1.9	1.4159e-08	314
297	10008	KCNE3	potassium voltage-gated channel, Isk- related family, member 3	0.91	1.9	1.0528e-07	477
298	29108	PYCARD	PYD and CARD domain containing	0.91	1.9	1.3576e-07	498
299	23526	HMHA1	histocompatibility (minor) HA-1	0.91	1.9	8.7560e-09	283
300	3572	IL6ST	interleukin 6 signal transducer	0.90	1.9	4.1063e-10	111
301	5008	OSM	oncostatin M	0.90	1.9	1.6639e-07	519
302	11010	GLIPR1	GLI pathogenesis-related 1	0.90	1.9	3.9492e-07	582
303	8840	WISP1	WNT1 inducible signaling pathway protein 1	0.90	1.9	1.9570e-04	1018
304	135112	NCOA7	nuclear receptor coactivator 7	0.90	1.9	4.7492e-08	411
305	30001	ERO1L	ERO1-like (S. cerevisiae)	0.90	1.9	3.0179e-06	747
306	79627	OGFRL1	opioid growth factor receptor-like 1	0.90	1.9	2.0307e-05	896
307	9473	THEMIS2	thymocyte selection associated family member 2	0.90	1.9	3.1440e-06	754
308	4891	SLC11A2	solute carrier family 11 (proton-coupled divalent metal ion transporter), mem- ber 2	0.90	1.9	1.7783e-08	337
309	202	AIM1	absent in melanoma 1	0.90	1.9	2.1731e-05	905
310	284207	METRNL	meteorin, glial cell differentiation regulator-like	0.89	1.9	2.9431e-09	218
311	9966	TNFSF15	tumor necrosis factor (ligand) super- family, member 15	0.89	1.9	8.7964e-05	979
312	89796	NAV1	neuron navigator 1	0.89	1.9	5.6501e-06	800
313	115908	CTHRC1	collagen triple helix repeat containing 1	0.89	1.8	2.9779e-05	923
314	860	RUNX2	runt-related transcription factor 2	0.88	1.8	1.5119e-06	689
315	5293	PIK3CD	phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta	0.88	1.8	1.0621e-08	293
316	415116	PIM3	Pim-3 proto-oncogene, ser- ine/threonine kinase	0.88	1.8	7.3272e-11	82
317	1902	LPAR1	lysophosphatidic acid receptor 1	0.87	1.8	2.6974e-06	736
318	9595	CYTIP	cytohesin 1 interacting protein	0.87	1.8	9.1538e-05	981
319	9060	PAPSS2	3'-phosphoadenosine 5'-phosphosulfate synthase 2	0.87	1.8	1.8179e-07	523
320	4319	MMP10	matrix metallopeptidase 10	0.87	1.8	1.7237e-04	1015
			(stromelysin 2)				
321	56243	KIAA1217	KIAA1217	0.87	1.8	8.4864e-04	1074

Table 7 – continued from previous page

		19	able 7 continued from previous page				
322	91653	BOC	BOC cell adhesion associated, oncogene	0.87	1.8	1.0121e-05	847
			regulated				
323	101	ADAM8	ADAM metallopeptidase domain 8	0.86	1.8	6.1560e-08	425
324	53829	P2RY13	purinergic receptor P2Y, G-protein	0.86	1.8	1.8747e-05	890
205	0.000	IDCO	coupled, 13	0.00	1.0	2 5 6 0 4 0 5	0.95
325	8660	IRS2	insulin receptor substrate 2	0.86	1.8	3.5604e-05	935
326	2023	ENOI	enolase 1, (alpha)	0.86	1.8	4.1942e-07	588
327	6813	STXBP2	syntaxin binding protein 2	0.86	1.8	5.7731e-09	252
328	3726	JUNB	Jun B proto-oncogene	0.85	1.8	3.9769e-08	396
329	199	AIF1	allograft inflammatory factor 1	0.85	1.8	5.4352e-08	417
330	6355	UCL8	chemokine (C-C motif) ligand 8	0.85	1.8	6.3700e-08	431
331	38484	NLRC4	NLR family, CARD domain containing	0.85	1.8	2.9898e-00	140
220	54504	CDVI	4	0.85	1.0	1 74540 05	005
002 000	04004		lyging (K) gpacific domethylage 6P	0.85	1.0	1.7454e-05	<u> </u>
- <u>-</u>	23133	SEMA4D	iyshie (K)-specific demethylase ob	0.84	1.0	1.4029e-07	<u> </u>
334	10307	SEMA4D	main (Ig), transmembrane domain	0.84	1.0	3.0227e-00	149
			(TM) and short cytoplasmic domain, (semaphorin) 4D				
335	83937	RASSF4	Ras association (RalGDS/AF-6) do-	0.84	1.8	2.3378e-07	542
			main family member 4				
336	1992	SERPINB1	serpin peptidase inhibitor, clade B	0.84	1.8	7.7976e-08	449
			(ovalbumin), member 1				
337	255488	RNF144B	ring finger protein 144B	0.84	1.8	2.0187e-06	716
338	3687	ITGAX	integrin, alpha X (complement compo-	0.84	1.8	9.0708e-08	461
			nent 3 receptor 4 subunit)				
339	79772	MCTP1	multiple C2 domains, transmembrane 1	0.83	1.8	1.0461e-03	1082
340	3459	IFNGR1	interferon gamma receptor 1	0.83	1.8	3.7832e-06	769
341	664	BNIP3	BCL2/adenovirus E1B 19kDa interact-	0.83	1.8	4.0594e-05	937
			ing protein 3				
342	409	ARRB2	arrestin, beta 2	0.83	1.8	1.0234e-07	474
343	4046	LSP1	lymphocyte-specific protein 1	0.83	1.8	9.1279e-07	643
344	29931	LINC00312	long intergenic non-protein coding RNA 312	0.82	1.8	5.7113e-07	612
345	30011	SH3KBP1	SH3-domain kinase binding protein 1	0.82	1.8	8.6169e-07	640
346	29015	SLC43A3	solute carrier family 43, member 3	0.82	1.8	1.3599e-08	312
347	284996	RNF149	ring finger protein 149	0.82	1.8	4.8905e-06	790
348	56938	ARNTL2	aryl hydrocarbon receptor nuclear	0.82	1.8	1.5298e-08	320
			translocator-like 2				
349	4170	MCL1	myeloid cell leukemia 1	0.82	1.8	4.9562e-11	69
350	6352	CCL5	chemokine (C-C motif) ligand 5	0.82	1.8	2.7022e-04	1028
351	5337	PLD1	phospholipase D1, phosphatidylcholine- specific	0.82	1.8	1.2390e-04	996
352	624	BDKRB2	bradykinin receptor B2	0.82	1.8	2.3694e-06	726
353	89790	SIGLEC10	sialic acid binding Ig-like lectin 10	0.81	1.8	2.7611e-06	740
354	23643	LY96	lymphocyte antigen 96	0.81	1.8	1.1982e-04	992
355	3059	HCLS1	hematopoietic cell-specific Lyn sub-	0.81	1.8	5.2521e-05	952
			strate 1				
356	3579	CXCR2	chemokine (C-X-C motif) receptor 2	0.81	1.8	3.8200e-06	771
357	10154	PLXNC1	plexin C1	0.81	1.8	2.6157e-04	1027
358	90853	SPOCD1	SPOC domain containing 1	0.81	1.8	3.6061e-07	573
359	8506	CNTNAP1	contactin associated protein 1	0.81	1.8	4.4017e-12	38

Table 7 – continued from previous page

		10	able r – continued nom previous page				
360	11026	LILRA3	leukocyte immunoglobulin-like recep-	0.81	1.8	1.3516e-04	998
			tor, subfamily A (without TM domain),				
			member 3				
361	5464	PPA1	pyrophosphatase (inorganic) 1	0.81	1.8	1.2230e-10	97
362	3455	IFNAR2	interferon (alpha, beta and omega) re-	0.81	1.7	7.1080e-10	134
			ceptor 2				
363	23764	MAFF	v-maf avian musculoaponeurotic fi-	0.81	1.7	1.1231e-04	989
			brosarcoma oncogene homolog F				
364	115701	ALPK2	alpha-kinase 2	0.80	1.7	4.6308e-06	787
365	1536	CYBB	cytochrome b-245, beta polypeptide	0.80	1.7	2.2059e-06	720
366	7706	TRIM25	tripartite motif containing 25	0.80	1.7	7.0936e-08	443
367	80315	CPEB4	cytoplasmic polyadenylation element	0.80	1.7	6.3807e-05	962
			binding protein 4				
368	4057	LTF	lactotransferrin	0.80	1.7	5.8989e-04	1064
369	6675	UAP1	UDP-N-acetylglucosamine pyrophos-	0.80	1.7	2.6428e-08	372
			phorylase 1				
370	8843	HCAR3	hydroxycarboxylic acid receptor 3	0.79	1.7	1.9105e-04	1016
371	1075	CTSC	cathepsin C	0.79	1.7	3.3325e-06	761
372	116844	LRG1	leucine-rich alpha-2-glycoprotein 1	0.79	1.7	7.0802e-08	441
373	3673	ITGA2	integrin, alpha 2 (CD49B, alpha 2 sub-	0.79	1.7	3.9683e-05	936
			unit of VLA-2 receptor)				
374	3908	LAMA2	laminin, alpha 2	0.79	1.7	2.1803e-08	353
375	221178	SPATA13	spermatogenesis associated 13	0.79	1.7	2.2935e-06	723
376	822	CAPG	capping protein (actin filament),	0.79	1.7	1.6058e-06	696
			gelsolin-like				
377	10659	CELF2	CUGBP, Elav-like family member 2	0.79	1.7	8.9747e-06	838
378	951	CD37	CD37 molecule	0.79	1.7	7.8886e-06	828
379	4609	MYC	v-myc avian myelocytomatosis viral	0.79	1.7	1.4050e-10	98
			oncogene homolog				
380	157506	RDH10	retinol dehydrogenase 10 (all-trans)	0.79	1.7	1.9352e-04	1017
381	1839	HBEGF	heparin-binding EGF-like growth factor	0.79	1.7	5.2640e-04	1062
382	283209	PGM2L1	phosphoglucomutase 2-like 1	0.78	1.7	3.4792e-05	934
383	10320	IKZF1	IKAROS family zinc finger 1 (Ikaros)	0.78	1.7	1.2462e-05	859
384	11067	C10orf10	chromosome 10 open reading frame 10	0.78	1.7	1.7244e-05	884
385	84695	LOXL3	lysyl oxidase-like 3	0.77	1.7	8.4110e-08	456
386	10312	TCIRG1	T-cell, immune regulator 1, ATPase,	0.77	1.7	1.6230e-07	518
			H+ transporting, lysosomal V0 subunit				
			A3				
387	4327	MMP19	matrix metallopeptidase 19	0.77	1.7	7.9120e-09	276
388	84002	B3GNT5	UDP-GlcNAc:betaGal beta-1,3-N-	0.77	1.7	1.6854e-04	1013
			acetylglucosaminyltransferase 5				
389	148932	MOB3C	MOB kinase activator 3C	0.77	1.7	7.0859e-08	442
390	79168	LILRA6	leukocyte immunoglobulin-like recep-	0.77	1.7	1.6458e-06	698
			tor, subfamily A (with TM domain),				
		<u>.</u>	member 6				
391	2701	GJA4	gap junction protein, alpha 4, 37kDa	0.77	1.7	8.8012e-10	145
392	6195	RPS6KA1	ribosomal protein S6 kinase, 90kDa,	0.77	1.7	1.3848e-07	500
			polypeptide 1				
393	634	CEACAM1	carcinoembryonic antigen-related cell	0.77	1.7	3.0578e-06	750
			adhesion molecule 1 (biliary glycopro-				
	110000		tein)				
394	118932	ANKRD22	ankyrın repeat domain 22	0.77	1.7	1.8537e-05	889

Table 7 – continued from previous page

			able i continued nom previous page				
395	2331	FMOD	fibromodulin	0.77	1.7	1.4593e-05	871
396	64115	C10orf54	chromosome 10 open reading frame 54	0.76	1.7	1.3795e-05	865
397	6039	RNASE6	ribonuclease, RNase A family, k6	0.76	1.7	2.8360e-04	1033
398	1362	CPD	carboxypeptidase D	0.76	1.7	1.5147e-08	318
399	4790	NFKB1	nuclear factor of kappa light polypep- tide gene enhancer in B-cells 1	0.76	1.7	4.4009e-07	592
400	64127	NOD2	nucleotide-binding oligomerization do- main containing 2	0.76	1.7	1.7237e-05	883
401	51616	TAF9B	TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated fac- tor, 31kDa	0.76	1.7	5.1469e-05	950
402	2706	GJB2	gap junction protein, beta 2, 26kDa	0.76	1.7	2.5636e-05	915
403	5327	PLAT	plasminogen activator, tissue	0.75	1.7	3.9222e-04	1051
404	57580	PREX1	phosphatidylinositol-3,4,5- trisphosphate-dependent Rac exchange factor 1	0.75	1.7	6.6067e-07	619
405	8651	SOCS1	suppressor of cytokine signaling 1	0.75	1.7	4.7140e-07	599
406	5580	PRKCD	protein kinase C, delta	0.75	1.7	9.8774e-06	842
407	5734	PTGER4	prostaglandin E receptor 4 (subtype EP4)	0.75	1.7	8.9168e-06	837
408	64005	MYO1G	myosin IG	0.75	1.7	1.6604e-06	700
409	2210	FCGR1B	Fc fragment of IgG, high affinity Ib, receptor (CD64)	0.75	1.7	7.2832e-05	968
410	11314	CD300A	CD300a molecule	0.75	1.7	1.0084e-05	845
411	7097	TLR2	toll-like receptor 2	0.75	1.7	3.4299e-06	763
412	23765	IL17RA	interleukin 17 receptor A	0.74	1.7	1.6127e-09	180
413	5777	PTPN6	protein tyrosine phosphatase, non- receptor type 6	0.74	1.7	6.4213e-08	434
414	7187	TRAF3	TNF receptor-associated factor 3	0.74	1.7	6.1348e-09	258
415	51015	ISOC1	isochorismatase domain containing 1	0.74	1.7	1.3829e-04	1000
416	3240	HP	haptoglobin	0.74	1.7	6.3020e-06	806
417	2004	ELK3	ELK3, ETS-domain protein (SRF accessory protein 2)	0.74	1.7	5.2979e-06	796
418	4794	NFKBIE	nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor, epsilon	0.74	1.7	2.8614e-08	378
419	55640	FLVCR2	feline leukemia virus subgroup C cellu- lar receptor family, member 2	0.74	1.7	2.3000e-05	907
420	51363	CHST15	carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) sulfotransferase 15	0.73	1.7	1.8746e-06	708
421	9111	NMI	N-myc (and STAT) interactor	0.73	1.7	1.3910e-05	867
422	5698	PSMB9	proteasome (prosome, macropain) sub- unit, beta type, 9	0.73	1.7	1.5844e-05	877
423	8837	CFLAR	CASP8 and FADD-like apoptosis regulator	0.73	1.7	3.8004e-04	1049
424	10855	HPSE	heparanase	0.73	1.7	3.3401e-05	931
425	6091	ROBO1	roundabout, axon guidance receptor, homolog 1 (Drosophila)	0.73	1.7	6.4283e-06	809
426	5210	PFKFB4	6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 4	0.73	1.7	2.0038e-07	530
427	4050	LTB	lymphotoxin beta (TNF superfamily, member 3)	0.73	1.7	2.6234e-06	734

Table 7 – continued from previous page

428	7980	TFPI2	tissue factor pathway inhibitor 2	0.72	1.7	1.0148e-04	986
429	5199	CFP	complement factor properdin	0.72	1.7	7.0734e-06	820
430	8807	IL18RAP	interleukin 18 receptor accessory pro- tein	0.72	1.6	6.1819e-09	260
431	9953	HS3ST3B1	heparan sulfate (glucosamine) 3-O- sulfotransferase 3B1	0.72	1.6	1.2036e-04	993
432	2710	GK	glycerol kinase	0.72	1.6	4.2670e-06	777
433	1281	COL3A1	collagen, type III, alpha 1	0.72	1.6	2.7837e-04	1029
434	50515	CHST11	carbohydrate (chondroitin 4) sulfo- transferase 11	0.72	1.6	2.7145e-09	213
435	3038	HAS3	hyaluronan synthase 3	0.72	1.6	9.7875e-05	984
436	29995	LMCD1	LIM and cysteine-rich domains 1	0.72	1.6	9.1857e-08	463
437	23150	FRMD4B	FERM domain containing 4B	0.72	1.6	1.3933e-04	1001
438	2847	MCHR1	melanin-concentrating hormone receptor 1	0.72	1.6	1.6975e-04	1014
439	3958	LGALS3	lectin, galactoside-binding, soluble, 3	0.72	1.6	1.2735e-06	674
440	1026	CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	0.72	1.6	1.7601e-07	521
441	2615	LRRC32	leucine rich repeat containing 32	0.72	1.6	5.0424e-09	244
442	126014	OSCAR	osteoclast associated, immunoglobulin- like receptor	0.71	1.6	2.5299e-06	730
443	5226	PGD	phosphogluconate dehydrogenase	0.71	1.6	7.7382e-06	826
444	4217	MAP3K5	mitogen-activated protein kinase kinase kinase 5	0.71	1.6	1.2126e-05	857
445	55013	CCDC109B	coiled-coil domain containing 109B	0.71	1.6	2.0765e-05	897
446	51411	BIN2	bridging integrator 2	0.71	1.6	5.6028e-08	419
447	83641	FAM107B	family with sequence similarity 107, member B	0.71	1.6	2.1235e-05	900
448	2683	B4GALT1	UDP-Gal:betaGlcNAc beta 1,4- galac- tosyltransferase, polypeptide 1	0.71	1.6	8.1284e-05	974
449	23092	ARHGAP26	Rho GTPase activating protein 26	0.71	1.6	1.6865e-08	331
450	53831	GPR84	G protein-coupled receptor 84	0.71	1.6	4.9845e-07	603
451	6542	SLC7A2	solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	0.70	1.6	2.1058e-05	898
452	6774	STAT3	signal transducer and activator of tran- scription 3 (acute-phase response fac- tor)	0.70	1.6	5.4618e-09	246
453	8795	TNFRSF10B	tumor necrosis factor receptor super- family, member 10b	0.70	1.6	1.9294e-07	528
454	124935	SLC43A2	solute carrier family 43 (amino acid system L transporter), member 2	0.70	1.6	1.6657e-06	701
455	1535	CYBA	cytochrome b-245, alpha polypeptide	0.70	1.6	7.0016e-06	818
456	5294	PIK3CG	phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma	0.70	1.6	9.2249e-06	839
457	54440	SASH3	SAM and SH3 domain containing 3	0.70	1.6	3.6511e-07	575
458	948	CD36	CD36 molecule (thrombospondin recep- tor)	0.70	1.6	2.6896e-05	917
459	11177	BAZ1A	bromodomain adjacent to zinc finger domain, 1A	0.70	1.6	5.3941e-06	798
460	84888	SPPL2A	signal peptide peptidase like 2A	0.70	1.6	3.2047e-11	53
461	9991	PTBP3	polypyrimidine tract binding protein 3	0.69	1.6	2.1361e-09	198

Table 7 – continued from previous page

		Ic	able 7 – continued from previous page				
462	637	BID	BH3 interacting domain death agonist	0.69	1.6	3.2117e-06	756
463	79415	C17orf62	chromosome 17 open reading frame 62	0.69	1.6	3.7964e-09	232
464	9961	MVP	major vault protein	0.69	1.6	2.1978e-08	356
465	2213	FCGR2B	Fc fragment of IgG, low affinity IIb, re-	0.69	1.6	1.0233e-03	1081
			ceptor (CD32)				
466	1436	CSF1R	colony stimulating factor 1 receptor	0.69	1.6	1.1783e-04	990
467	22904	SBNO2	strawberry notch homolog 2	0.69	1.6	7.2331e-10	136
			(Drosophila)				
468	8793	TNFRSF10D	tumor necrosis factor receptor super-	0.69	1.6	1.2926e-06	676
			family, member 10d, decoy with trun-				
			cated death domain				
469	2634	GBP2	guanylate binding protein 2, interferon-	0.69	1.6	3.8486e-04	1050
			inducible				
470	83442	SH3BGRL3	SH3 domain binding glutamate-rich	0.69	1.6	2.7364e-06	739
			protein like 3				
471	57575	PCDH10	protocadherin 10	0.69	1.6	1.5841e-05	876
472	54206	ERRFI1	ERBB receptor feedback inhibitor 1	0.69	1.6	2.2426e-05	906
473	5328	PLAU	plasminogen activator, urokinase	0.68	1.6	9.4556e-05	983
474	5230	PGK1	phosphoglycerate kinase 1	0.68	1.6	3.7697e-07	576
475	23670	TMEM2	transmembrane protein 2	0.68	1.6	1.3807e-09	173
476	6688	SPI1	Spi-1 proto-oncogene	0.68	1.6	6.4882e-06	810
477	51114	ZDHHC9	zinc finger, DHHC-type containing 9	0.68	1.6	7.7918e-07	628
478	9509	ADAMTS2	ADAM metallopeptidase with throm-	0.68	1.6	1.6241e-04	1011
			bospondin type 1 motif, 2				
479	8566	PDXK	pyridoxal (pyridoxine, vitamin B6) ki-	0.68	1.6	2.6298e-09	210
			nase				
480	283897	C16orf54	chromosome 16 open reading frame 54	0.68	1.6	5.7148e-05	956
481	8934	RAB29	RAB29, member RAS oncogene family	0.68	1.6	1.4353e-05	868
482	3091	HIF1A	hypoxia inducible factor 1, alpha sub-	0.68	1.6	8.8103e-11	90
			unit (basic helix-loop-helix transcrip-				
			tion factor)				
483	7360	UGP2	UDP-glucose pyrophosphorylase 2	0.68	1.6	6.9577e-06	816
484	3732	CD82	CD82 molecule	0.68	1.6	7.7174e-10	140
485	441168	FAM26F	family with sequence similarity 26,	0.67	1.6	6.1602e-04	1067
			member F				
486	9997	SCO2	SCO2 cytochrome c oxidase assembly	0.67	1.6	1.1351e-11	47
			protein				
487	571	BACH1	BTB and CNC homology 1, basic	0.67	1.6	2.9572e-09	219
			leucine zipper transcription factor 1				
488	5611	DNAJC3	DnaJ (Hsp40) homolog, subfamily C,	0.67	1.6	1.0865e-05	851
			member 3				
489	151987	PPP4R2	protein phosphatase 4, regulatory sub-	0.67	1.6	1.8305e-11	50
			unit 2				
490	27128	CYTH4	cytohesin 4	0.67	1.6	1.3706e-06	680
491	89849	ATG16L2	autophagy related 16-like 2 (S. cere-	0.67	1.6	3.9704e-07	583
			visiae)				
492	26585	GREM1	gremlin 1, DAN family BMP antagonist	0.67	1.6	7.9604e-04	1071
493	3995	FADS3	fatty acid desaturase 3	0.67	1.6	9.7034e-08	467
494	5937	RBMS1	RNA binding motif, single stranded in-	0.67	1.6	5.7477e-06	801
			teracting protein 1				
495	00000	DILDA	naired immunarlabin like tune 2 recon	0.67	16	3.06030.07	559
100	29992	PILKA	paned minunogiobin-like type 2 recep-	0.07	1.0	3.00936-07	550

Table 7 – continued from previous page

		1.					
496	4615	MYD88	myeloid differentiation primary re-	0.67	1.6	2.8790e-09	215
			sponse 88				
497	6892	TAPBP	TAP binding protein (tapasin)	0.66	1.6	1.2092e-07	491
498	1959	EGR2	early growth response 2	0.66	1.6	1.2236e-04	994
499	84649	DGAT2	diacylglycerol O-acyltransferase 2	0.66	1.6	2.7400e-07	552
500	50650	ARHGEF3	Rho guanine nucleotide exchange factor (GEF) 3	0.66	1.6	7.1263e-06	821
501	4071	TM4SF1	transmembrane 4 L six family member 1	0.66	1.6	2.8230e-04	1032
502	7048	TGFBR2	transforming growth factor, beta recep- tor II (70/80kDa)	0.66	1.6	1.8001e-06	704
503	6351	CCL4	chemokine (C-C motif) ligand 4	0.66	1.6	3.1917e-04	1039
504	79572	ATP13A3	ATPase type 13A3	0.66	1.6	1.8527e-05	888
505	1820	ARID3A	AT rich interactive domain 3A (BRIGHT-like)	0.66	1.6	8.6186e-09	282
506	23531	MMD	monocyte to macrophage differentiation-associated	0.66	1.6	8.2252e-07	633
507	57085	AGTRAP	angiotensin II receptor-associated pro- tein	0.66	1.6	1.9815e-08	343
508	4783	NFIL3	nuclear factor, interleukin 3 regulated	0.65	1.6	4.6075e-07	595
509	220	ALDH1A3	aldehyde dehydrogenase 1 family, mem- ber A3	0.65	1.6	2.4903e-05	912
510	3566	IL4R	interleukin 4 receptor	0.65	1.6	1.6909e-08	332
511	9052	GPRC5A	G protein-coupled receptor, class C, group 5, member A	0.65	1.6	3.2319e-07	563
512	26253	CLEC4E	C-type lectin domain family 4, member E	0.65	1.6	1.0631e-06	655
513	6676	SPAG4	sperm associated antigen 4	0.65	1.6	2.1474e-05	903
514	22898	DENND3	DENN/MADD domain containing 3	0.65	1.6	3.2040e-08	387
515	4493	MT1E	metallothionein 1E	0.65	1.6	5.2559e-04	1061
516	10797	MTHFD2	methylenetetrahydrofolate dehydroge- nase (NADP+ dependent) 2, methenyl- tetrahydrofolate cyclohydrolase	0.65	1.6	2.0809e-04	1022
517	1277	COL1A1	collagen, type I, alpha 1	0.65	1.6	1.5830e-03	1088
518	56882	CDC42SE1	CDC42 small effector 1	0.65	1.6	4.1548e-04	1054
519	4862	NPAS2	neuronal PAS domain protein 2	0.65	1.6	8.3481e-07	634
520	6275	S100A4	S100 calcium binding protein A4	0.65	1.6	2.3965e-03	1089
521	9051	PSTPIP1	proline-serine-threenine phosphatase interacting protein 1	0.65	1.6	9.8958e-07	649
522	56833	SLAMF8	SLAM family member 8	0.65	1.6	1.8427e-06	706
523	962	CD48	CD48 molecule	0.65	1.6	4.4183e-05	945
524	6398	SECTM1	secreted and transmembrane 1	0.65	1.6	2.9297e-06	745
525	2908	NR3C1	nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)	0.65	1.6	3.0449e-04	1036
526	8828	NRP2	neuropilin 2	0.65	1.6	1.6188e-06	697
527	8809	IL18R1	interleukin 18 receptor 1	0.64	1.6	1.3675e-06	679
528	100133941	CD24	CD24 molecule	0.64	1.6	4.5777e-04	1060
529	359845	FAM101B	family with sequence similarity 101, member B	0.64	1.6	2.4868e-06	729
530	81603	TRIM8	tripartite motif containing 8	0.64	1.6	1.3567e-07	497
531	6925	TCF4	transcription factor 4	0.64	1.6	4.3414e-04	1057

Table 7 – continued from previous page

		10	able 7 continued from previous page				
532	3654	IRAK1	interleukin-1 receptor-associated kinase 1	0.64	1.6	8.6415e-08	459
533	64231	MS4A6A	membrane-spanning 4-domains, sub- family A, member 6A	0.64	1.6	7.3865e-05	970
534	3097	HIVEP2	human immunodeficiency virus type I enhancer binding protein 2	0.64	1.6	1.1791e-05	855
535	942	CD86	CD86 molecule	0.64	1.6	1.8103e-05	886
536	80215	RUNX1-IT1	RUNX1 intronic transcript 1 (non-	0.64	1.6	2.0056e-06	715
			protein coding)				
537	83862	TMEM120A	transmembrane protein 120A	0.64	1.6	1.2174e-06	668
538	1903	S1PR3	sphingosine-1-phosphate receptor 3	0.64	1.6	2.0111e-04	1019
539	155038	GIMAP8	GTPase, IMAP family member 8	0.64	1.6	2.0761e-04	1021
540	1794	DOCK2	dedicator of cytokinesis 2	0.64	1.6	1.2479e-05	860
541	89846	FGD3	FYVE, RhoGEF and PH domain con-	0.64	1.6	2.1913e-07	535
			taining 3				
542	433	ASGR2	asialoglycoprotein receptor 2	0.63	1.6	1.7400e-08	334
543	719	C3AR1	complement component 3a receptor 1	0.63	1.6	1.9562e-05	894
544	2200	FBN1	fibrillin 1	0.63	1.6	1.8129e-08	339
545	3552	IL1A	interleukin 1, alpha	0.63	1.5	3.2059e-04	1040
546	2191	FAP	fibroblast activation protein, alpha	0.63	1.5	5.8982e-08	423
547	6464	SHC1	SHC (Src homology 2 domain contain-	0.63	1.5	2.5091e-09	208
			ing) transforming protein 1				
548	391	RHOG	ras homolog family member G	0.63	1.5	3.1935e-07	561
549	10788	IQGAP2	IQ motif containing GTPase activating protein 2	0.63	1.5	1.3755e-06	681
550	3428	IFI16	interferon, gamma-inducible protein 16	0.63	1.5	3.4346e-04	1045
551	9120	SLC16A6	solute carrier family 16, member 6	0.63	1.5	3.2248e-05	927
552	9510	ADAMTS1	ADAM metallopeptidase with throm- bospondin type 1 motif, 1	0.63	1.5	4.3266e-05	941
553	22846	VASH1	vasohibin 1	0.63	1.5	1.4416e-03	1086
554	7474	WNT5A	wingless-type MMTV integration site family, member 5A	0.63	1.5	2.6754e-03	1093
555	56261	GPCPD1	glycerophosphocholine phosphodi- esterase GDE1 homolog (S. cerevisiae)	0.62	1.5	1.3032e-05	862
556	56975	FAM20C	family with sequence similarity 20, member C	0.62	1.5	1.0936e-08	296
557	9732	DOCK4	dedicator of cytokinesis 4	0.62	1.5	5.3311e-05	954
558	5196	PF4	platelet factor 4	0.62	1.5	4.2709e-06	778
559	55911	APOBR	apolipoprotein B receptor	0.62	1.5	1.2202e-06	669
560	10645	CAMKK2	calcium/calmodulin-dependent protein kinase kinase 2, beta	0.62	1.5	8.5048e-06	834
561	80853	KDM7A	lysine (K)-specific demethylase 7A	0.62	1.5	8.7914e-06	835
562	9586	CREB5	cAMP responsive element binding pro-	0.62	1.5	6.7042e-05	965
			tein 5				
563	10105	PPIF	peptidylprolyl isomerase F	0.62	1.5	2.7567e-09	214
564	7052	TGM2	transglutaminase 2	0.62	1.5	7.4030e-05	971
565	402483	LINC01000	long intergenic non-protein coding RNA 1000	0.61	1.5	2.3103e-05	908
566	8829	NRP1	neuropilin 1	0.61	1.5	8.2622e-05	977
567	3460	IFNGR2	interferon gamma receptor 2 (interferon gamma transducer 1)	0.61	1.5	3.1167e-09	222
567	3460	IFNGR2	anterieron gamma receptor 2 (interferon gamma transducer 1)	0.61	1.5	3.11	67e-09

Table 7 – continued from previous page

			able i continued noin previous page				
568	196051	PPAPDC1A	phosphatidic acid phosphatase type 2 domain containing 1A	0.61	1.5	1.4949e-04	1005
569	4241	MFI2	antigen p97 (melanoma associated)	0.61	1.5	1.2325e-05	858
			identified by monoclonal antibodies				
			133.2 and 96.5				
570	10123	ARL4C	ADP-ribosylation factor-like 4C	0.61	1.5	1.0636e-04	987
571	1290	COL5A2	collagen, type V, alpha 2	0.61	1.5	3.4473e-07	569
572	3709	ITPR2	inositol 1,4,5-trisphosphate receptor,	0.61	1.5	8.9375e-08	460
			type 2				
573	51537	MTFP1	mitochondrial fission process 1	0.61	1.5	1.3497e-06	678
574	3669	ISG20	interferon stimulated exonuclease gene	0.61	1.5	1.4023e-04	1002
			20kDa				
575	6890	TAP1	transporter 1, ATP-binding cassette,	0.60	1.5	4.7060e-06	789
			sub-family B (MDR/TAP)				
576	64098	PARVG	parvin, gamma	0.60	1.5	3.3700e-07	564
577	23166	STAB1	stabilin 1	0.60	1.5	1.4734e-05	872
578	4818	NKG7	natural killer cell granule protein 7	0.60	1.5	1.3609e-04	999
579	26996	GPR160	G protein-coupled receptor 160	0.60	1.5	1.3427e-04	997
580	271	AMPD2	adenosine monophosphate deaminase 2	0.60	1.5	4.6506e-09	239
581	51303	FKBP11	FK506 binding protein 11, 19 kDa	0.60	1.5	9.7877e-09	291
582	6793	STK10	serine/threonine kinase 10	0.60	1.5	6.7978e-07	622
583	7351	UCP2	uncoupling protein 2 (mitochondrial,	0.60	1.5	2.1116e-04	1023
			proton carrier)				
584	9050	PSTPIP2	proline-serine-threonine phosphatase	0.60	1.5	7.6745e-06	825
			interacting protein 2				
585	9103	FCGR2C	Fc fragment of IgG, low affinity IIc, re-	0.59	1.5	1.5135e-06	690
			ceptor for (CD32) (gene/pseudogene)	0.50			1001
586	4499	MT1M	metallothionein 1M	0.59	1.5	2.7637e-03	1094
587	10581	IFTTM2	interferon induced transmembrane pro-	0.59	1.5	3.4993e-07	570
			tein 2	0.50			
588	5873	RAB27A	RAB27A, member RAS oncogene fam-	0.59	1.5	7.3656e-07	626
500	4700	NEDDO	ily	0.50		4 1 1 0 5 0 4	1050
589	4739	NEDD9	neural precursor cell expressed, devel-	0.59	1.5	4.1125e-04	1053
500	610406	Co. (co.	opmentally down-regulated 9	0.50	1.5	4.0070.05	0.00
590	619426	U80rt60	chromosome 8 open reading frame 60	0.59	1.5	4.2076e-05	938
591	200916	RPL22L1	ribosomal protein L22-like 1	0.59	1.5	1.8849e-06	709
592	65220	NADK	NAD Kinase	0.59	1.5	2.5721e-07	546

Table 7 – continued from previous page

Table 8. List of 505 significantly downregulated genes between FIR and nonFIR affected infants. Genes are ordered by absolute log_2 fold-change in expression. Columns "LFC" and "FC" contain the fold-changes in log_2 and absolute scales, respectively. The latter has been inverted to ease its interpretation. The column "P rnk" provides the rank of each gene by raw *p*-value within the entire list of 1097 genes called differentially expressed.

	Entrez ID	Symbol	Full name	LFC	FC	P value	P rnk
1	1272	CNTN1	contactin 1	-2.07	4.2	2.4281e-14	4
2	29951	PDZRN4	PDZ domain containing ring finger 4	-1.80	3.5	4.0504e-11	61
3	477	ATP1A2	ATPase, Na+/K+ transporting, alpha	-1.78	3.4	3.9614e-13	18
			2 polypeptide				
4	1908	EDN3	endothelin 3	-1.68	3.2	1.4510e-09	176

			1 10				
5	59353	TMEM35	transmembrane protein 35	-1.62	3.1	7.6245e-11	83
6	151742	PPM1L	protein phosphatase, Mg2+/Mn2+ de-	-1.56	2.9	1.7575e-13	10
			pendent, 1L				
7	590	BCHE	butyrylcholinesterase	-1.55	2.9	1.4049e-11	49
8	4978	OPCML	opioid binding protein/cell adhesion	-1.52	2.9	1.3278e-09	171
			molecule-like				
9	81578	COL21A1	collagen, type XXI, alpha 1	-1.50	2.8	1.2989e-09	170
10	1305	COL13A1	collagen, type XIII, alpha 1	-1.43	2.7	1.7388e-12	28
11	4621	MYH3	myosin, heavy chain 3, skeletal muscle,	-1.42	2.7	1.0942e-05	852
			embryonic				
12	23171	GPD1L	glycerol-3-phosphate dehydrogenase 1-	-1.42	2.7	8.7765e-11	89
10	× 10.01		like	1.00			
13	54361	WNT4	wingless-type MMTV integration site	-1.39	2.6	5.5440e-09	247
1.4	4010	NUTDIZO	family, member 4	1.00	0.0	F 0 450 10	110
14	4916	NTRK3	neurotrophic tyrosine kinase, receptor,	-1.38	2.6	5.0476e-10	119
15	11166	I DD9	type 3	1.07	0.0	0.7000.00	741
15	11155	LDB3	LIM domain binding 3	-1.37	2.6	2.7892e-06	141
10	55228	PNMALI DLOE1	paraneoplastic Ma antigen family-like I	-1.37	2.6	0.3037e-09	204
11	51196	PLCEI EDCTI1	phospholipase C, epsilon 1	-1.34	2.5	2.00966-10	104
18	94240	EPSTII	epithelial stromal interaction 1 (breast)	-1.33	2.5	1.1689e-09	101
19	139065	SLITRK4	SLIT and NTRK-like family, member 4	-1.31	2.5	3.7914e-10	011
20	5166	PDK4	pyruvate dehydrogenase kinase,	-1.31	2.5	2.4892e-05	911
01	10074	ADIDE	isozyme 4	1.00	0.5	0.1607.00	077
21	10974	ADIRF DTDN14	adipogenesis regulatory factor	-1.29	2.5	8.1627e-09	277
22	5784	PTPN14	protein tyrosine phosphatase, non-	-1.28	2.4	4.1706e-08	400
	2000	4 5 5 9	receptor type 14	1.07	0.4	1 1104- 07	400
23	3899	AFF3	AF4/FMR2 family, member 3	-1.27	2.4	1.1104e-07	482
24	8/8/	RG59	CMAD fourily up on h an 0	-1.20	2.4	2.0278e-13	12
20	4093	SMAD9	SMAD family member 9	-1.20	2.4	2.0380e-12	057
20	4909	UGN TNEDSE10	osteogiycin	-1.20	2.4	0.0804e-05	957
21	55504	1117 157 19	family member 10	-1.20	2.4	2.4009e-08	304
28	5254	DI D1	protoclinid protoin 1	1.94	2.4	6.07800.04	1066
20	0004		proteonpid protein 1	-1.24	2.4	0.0780e-04	50
29	03400	GL16D2	9	-1.24	2.4	3.9010e-11	- 59
30	84962	AIUBA	2 ajuba LIM protein	-1.21	23	6 1147e-09	257
31	257194	NEGB1	neuronal growth regulator 1	-1.21	$\frac{2.0}{2.3}$	7.0403e-11	79
32	79148	MMP28	matrix metallopentidase 28	-1.20	2.3	3 9264e-11	58
33	83543	AIF1L	allograft inflammatory factor 1-like	-1.20	2.3	3 7293e-09	230
34	395	ARHGAP6	Bho GTPase activating protein 6	-1.20	2.3	1.8679e-11	51
35	5308	PITX2	paired-like homeodomain 2	-1.20	2.3	6.9537e-08	438
36	8082	SSPN	sarcospan	-1.20	2.3	1 1819e-07	490
37	65055	REEP1	receptor accessory protein 1	-1.20	2.3	4 0231e-09	236
38	572558	PGM5-AS1	PGM5 antisense BNA 1	-1.20	2.3	7 3691e-10	137
30	1288	COL4A6	collagen, type IV alpha 6	-1 20	2.3	5.7557e-09	251
40	284	ANGPT1	angiopoietin 1	-1.19	2.3	7.2791e-11	80
41	57631	LRCH2	leucine-rich repeats and calponin bo-	-1 19	2.3	4.2181e-11	62
11	01001	1100112	mology (CH) domain containing 2	1.10	2.0		02
42	84620	ST6GAL2	ST6 beta-galactosamide alpha-2.6-	-1.18	2.3	3.0230e-05	925
			sialvltranferase 2			3.02000.00	
43	23554	TSPAN12	tetraspanin 12	-1.17	2.3	1.4174e-07	506

Table 8 – continued from previous page

		i a	bie o continued nom previous page				
44	56952	PRTFDC1	phosphoribosyl transferase domain con- taining 1	-1.16	2.2	9.8066e-10	154
45	80144	FRAS1	Fraser extracellular matrix complex	-1.16	2.2	1.1144e-07	483
46	2258	ECE12	fibroblast growth factor 12	1 16	2.2	5 40160 14	6
40	2200 55607		norobiast growth factor 15	-1.10	2.2	5.4010e-14 6.0208o.00	0
47	55007	FFF IN9A	unit 9A	-1.10	2.2	0.95966-09	208
48	79739	TTLL7	tubulin tyrosine ligase-like family, member 7	-1.13	2.2	3.8315e-11	55
49	83690	CRISPLD1	cysteine-rich secretory protein LCCL	-1.13	2.2	3.5151e-07	571
50	140733	MACBOD2	MACRO domain containing 2	-1 12	2.2	8.0674e-12	42
51	339260	LOC339260	uncharacterized LOC339260	-1.12	2.2	1.9051e-08	341
52	8436	SDPR	serum deprivation response	-1.12	2.2	6.7802e-10	129
53	6565	SLC15A2	solute carrier family 15 (oligopeptide	-1.12	2.2	1.5724e-10	101
00	0000		transporter), member 2			1.0.210 10	101
54	5195	PEX14	peroxisomal biogenesis factor 14	-1.10	2.1	2.7709e-08	375
55	3671	ISLR	immunoglobulin superfamily contain-	-1.09	2.1	2.1060e-07	534
			ing leucine-rich repeat				
56	2977	GUCY1A2	guanylate cyclase 1, soluble, alpha 2	-1.09	2.1	9.6714e-10	153
57	4919	ROR1	receptor tyrosine kinase-like orphan re-	-1.07	2.1	2.6542e-09	211
			ceptor 1				
58	4329	ALDH6A1	aldehyde dehydrogenase 6 family, mem- ber A1	-1.07	2.1	4.6073e-06	785
59	29761	USP25	ubiquitin specific peptidase 25	-1.07	2.1	4.6477e-11	65
60	26033	ATRNL1	attractin-like 1	-1.06	2.1	7.0178e-08	440
61	56977	STOX2	storkhead box 2	-1.06	2.1	5.9408e-07	615
62	347902	AMIGO2	adhesion molecule with Ig-like domain	-1.06	2.1	4.1186e-08	399
			2				
63	51390	AIG1	androgen-induced 1	-1.06	2.1	7.2976e-11	81
64	27109	ATP5S	ATP synthase, H+ transporting, mito- chondrial Fo complex, subunit s (factor B)	-1.06	2.1	1.9809e-09	196
65	23236	PLCB1	phospholipase C, beta 1 (phosphoinositide-specific)	-1.05	2.1	2.7594e-10	108
66	23493	HEY2	hes-related family bHLH transcription	-1.05	2.1	2.7912e-13	16
			factor with YRPW motif 2				
67	5087	PBX1	pre-B-cell leukemia homeobox 1	-1.05	2.1	8.9533e-11	91
68	85004	RERG	RAS-like, estrogen-regulated, growth inhibitor	-1.05	2.1	1.5444e-08	321
69	84417	C2orf40	chromosome 2 open reading frame 40	-1.04	2.1	1.6898e-06	703
70	157638	FAM84B	family with sequence similarity 84.	-1.04	2.1	7.8846e-10	142
			member B				
71	200403	VWA3B	von Willebrand factor A domain con- taining 3B	-1.04	2.1	3.3951e-06	762
72	143098	MPP7	membrane protein, palmitoylated 7	-1.04	2.1	1.5551e-06	691
79	54740		(WAGUK p55 sublamily member 7)	1.02	2.0	1 9690 - 19	20
13	04/49	EPDKI OLEMI 1	ependymin related 1	-1.03	2.0	1.8029e-12	50
74	283298	ULFMLI	UOV transmist and DNA	-1.03	2.0	1.4055e-07	503
(5	114005	HUTAIK	Cla and tumon participation of the second states of	-1.02	2.0	4.1214e-06	(()
10	114905	UIQ1NF7	protein 7	-1.02	2.0	0.99556-06	811

T		~		
l able 8 –	continued	trom	previous	page

77	256691	MAMDC2	MAM domain containing 2	-1.01	2.0	7.8241e-06	827
78	2770	GNAI1	guanine nucleotide binding protein	-1.01	2.0	3.1589e-12	35
			(G protein), alpha inhibiting activity				
			polypeptide 1				
79	3590	IL11RA	interleukin 11 receptor, alpha	-1.01	2.0	2.0988e-09	197
80	100507311	LOC100507311	uncharacterized LOC100507311	-1.00	2.0	4.2411e-08	403
81	54985	HCFC1R1	host cell factor C1 regulator 1 (XPO1	-1.00	2.0	5.0052e-11	70
			dependent)				
82	2018	EMX2	empty spiracles homeobox 2	-1.00	2.0	2.5548e-12	32
83	56849	TCEAL7	transcription elongation factor A (SII)-	-0.99	2.0	5.1342e-08	416
			like 7				
84	5906	RAP1A	RAP1A, member of RAS oncogene fam-	-0.99	2.0	8.7347e-13	22
			ily				
85	79966	SCD5	stearoyl-CoA desaturase 5	-0.99	2.0	7.9852e-08	452
86	112770	Clorf85	chromosome 1 open reading frame 85	-0.99	2.0	3.9061e-09	233
87	3680	ITGA9	integrin, alpha 9	-0.99	2.0	3.7711e-08	390
88	7552	ZNF711	zinc finger protein 711	-0.98	2.0	2.2279e-09	199
89	56241	SUSD2	sushi domain containing 2	-0.98	2.0	1.2717e-06	673
90	5789	PTPRD	protein tyrosine phosphatase, receptor	-0.98	2.0	7.1563e-09	269
			type, D				
91	54477	PLEKHA5	pleckstrin homology domain contain-	-0.98	2.0	1.5695e-10	100
			ing, family A member 5				
92	286205	SCAI	suppressor of cancer cell invasion	-0.98	2.0	3.6490e-12	37
93	8395	PIP5K1B	phosphatidylinositol-4-phosphate	-0.98	2.0	7.3460e-05	969
			5-kinase, type I, beta				
94	8404	SPARCL1	SPARC-like 1 (hevin)	-0.98	2.0	6.5371e-09	266
95	9737	GPRASPI	G protein-coupled receptor associated	-0.98	2.0	6.5411e-11	76
		DECILI	sorting protein 1		2.0		
96	5727	PTCHI	patched I	-0.97	2.0	3.9074e-11	57
97	220965	FAM13C	family with sequence similarity 13,	-0.97	2.0	3.8345e-08	393
	2022	HADH	member C	0.00		4 44 0 0 4 4	
98	3033	HADH	hydroxyacyl-CoA dehydrogenase	-0.96	2.0	4.4100e-11	64
99	285759	FLJ34503	uncharacterized FLJ34503	-0.96	1.9	2.3646e-04	1025
100	80318	GKAP1	G kinase anchoring protein 1	-0.96	1.9	5.8992e-09	254
101	2487	FRZB	trizzled-related protein	-0.96	1.9	6.2503e-05	959
102	3670	ISLI	ISL LIM homeobox 1	-0.95	1.9	6.3091e-05	961
103	9547	CXCL14	chemokine (C-X-C motif) ligand 14	-0.95	1.9	2.4720e-03	1091
104	1842	ECM2	extracellular matrix protein 2, female	-0.95	1.9	1.0887e-07	481
105	401000	MDNII 1 A.C.1	organ and adipocyte specific	0.04	1.0	2.0054.00	202
105	401093	MBNLI-ASI	MBNLI antisense RNA I	-0.94	1.9	2.9954e-08	383
106	3741	KCNA5	potassium voltage-gated channel,	-0.94	1.9	2.9019e-07	554
105	00.40	DDO1/1	shaker-related subfamily, member 5	0.04	1.0	1.6000.05	070
107	8842	PROMI	prominin 1	-0.94	1.9	1.6223e-05	879
108	55034	MOCOS	molybdenum cofactor sulfurase	-0.94	1.9	3.8522e-06	772
109	5295	PIK3R1	phosphoinositide-3-kinase, regulatory	-0.93	1.9	1.1724e-08	300
110	1007		subunit 1 (alpha)	0.00	1.0	4 4 4 1 1 1 1 1 1 1 1 1	~
110	1287	COL4A5	collagen, type IV, alpha 5	-0.93	1.9	1.1477e-13	9
	53354	PANKI	pantothenate kinase 1	-0.93	1.9	2.2413e-09	200
112	100288911	LUC100288911	uncharacterized LOC100288911	-0.93	1.9	5.7216e-07	613
113	51422	PRKAG2	protein kinase, AMP-activated, gamma	-0.93	1.9	4.3981e-05	942
			2 non-catalytic subunit				

Table 8 – continued from previous page

		Idi	bie o – continued from previous page				
114	8630	HSD17B6	hydroxysteroid (17-beta) dehydroge- nase 6	-0.93	1.9	2.4694e-08	367
115	29904	EEF2K	eukaryotic elongation factor-2 kinase	-0.92	1.9	2.9110e-12	33
116	54800	KLHL24	kelch-like family member 24	-0.92	1.9	1.3344e-06	677
117	1031	CDKN2C	cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	-0.92	1.9	2.3436e-09	204
118	90293	KLHL13	kelch-like family member 13	-0.92	1.9	6.8198e-06	813
119	619279	ZNF704	zinc finger protein 704	-0.92	1.9	6.3106e-08	427
120	5348	FXYD1	FXYD domain containing ion transport	-0.91	1.9	1.0396e-11	45
			regulator 1				
121	2549	GAB1	GRB2-associated binding protein 1	-0.91	1.9	5.0259e-10	118
122	130271	PLEKHH2	pleckstrin homology domain contain-	-0.91	1.9	4.5065e-08	407
			ing, family H (with MyTH4 domain)				
			member 2				
123	9975	NR1D2	nuclear receptor subfamily 1, group D,	-0.91	1.9	2.5994e-04	1026
			member 2				
124	286097	MICU3	mitochondrial calcium uptake family,	-0.91	1.9	2.5784e-08	371
			member 3				
125	5099	PCDH7	protocadherin 7	-0.91	1.9	8.2125e-06	831
126	169611	OLFML2A	olfactomedin-like 2A	-0.90	1.9	4.5667e-08	408
127	11034	DSTN	destrin (actin depolymerizing factor)	-0.90	1.9	1.4395e-06	683
128	1825	DSC3	desmocollin 3	-0.90	1.9	1.3397e-08	310
129	2254	FGF9	fibroblast growth factor 9	-0.90	1.9	8.8982e-06	836
130	91624	NEXN	nexilin (F actin binding protein)	-0.90	1.9	1.0777e-08	295
131	2307	FOXS1	forkhead box S1	-0.90	1.9	6.4896e-08	436
132	4675	NAP1L3	nucleosome assembly protein 1-like 3	-0.90	1.9	1.0069e-06	650
133	57188	ADAMTSL3	ADAMTS-like 3	-0.90	1.9	1.7748e-07	522
134	3429	IFI27	interferon, alpha-inducible protein 27	-0.89	1.9	2.9432e-04	1035
135	9783	RIMS3	regulating synaptic membrane exocyto- sis 3	-0.89	1.9	1.2453e-07	493
136	64344	HIF3A	hypoxia inducible factor 3, alpha sub- unit	-0.88	1.8	3.1307e-04	1038
137	8863	PER3	period circadian clock 3	-0.88	1.8	8.1878e-07	631
138	10964	IFI44L	interferon-induced protein 44-like	-0.88	1.8	1.1794e-04	991
139	3226	HOXC10	homeobox C10	-0.87	1.8	1.3904e-05	866
140	22881	ANKRD6	ankyrin repeat domain 6	-0.87	1.8	4.7091e-07	598
141	57496	MKL2	MKL/myocardin-like 2	-0.87	1.8	2.9384e-08	381
142	51209	RAB9B	RAB9B, member RAS oncogene family	-0.86	1.8	3.6426e-07	574
143	8324	FZD7	frizzled class receptor 7	-0.86	1.8	1.2002e-08	302
144	1021	CDK6	cyclin-dependent kinase 6	-0.86	1.8	7.6760e-10	139
145	55137	FIGN	fidgetin	-0.86	1.8	9.1163e-07	642
146	167681	PRSS35	protease, serine, 35	-0.85	1.8	9.7118e-04	1079
147	11244	ZHX1	zinc fingers and homeoboxes 1	-0.85	1.8	1.5346e-04	1008
148	90871	TMEM261	transmembrane protein 261	-0.85	1.8	2.0949e-08	347
149	23658	LSM5	LSM5 homolog, U6 small nuclear RNA	-0.85	1.8	1.5613e-08	323
			associated (S. cerevisiae)				
150	51477	ISYNA1	inositol-3-phosphate synthase 1	-0.85	1.8	3.4550e-09	227
151	79974	CPED1	cadherin-like and PC-esterase domain	-0.84	1.8	1.9132e-09	193
			containing 1				
152	$2\overline{3189}$	KANK1	KN motif and ankyrin repeat domains	-0.84	1.8	1.1242e-07	485
			1				

Table 8 – continued from previous page

		Iai	ble o – continued from previous page				
153	10217	CTDSPL	CTD (carboxy-terminal domain, RNA	-0.84	1.8	4.8893e-11	68
			polymerase II, polypeptide A) small				
			phosphatase-like				
154	145270	PRIMA1	proline rich membrane anchor 1	-0.84	1.8	2.6132e-05	916
155	6934	TCF7L2	transcription factor 7-like 2 (T-cell spe-	-0.84	1.8	6.3744e-08	432
			cific, HMG-box)				
156	9352	TXNL1	thioredoxin-like 1	-0.83	1.8	2.5808e-07	548
157	5136	PDE1A	phosphodiesterase 1A, calmodulin-	-0.83	1.8	1.6693e-04	1012
			dependent				
158	5334	PLCL1	phospholipase C-like 1	-0.83	1.8	2.2053e-08	357
159	102724927	LOC102724927	uncharacterized LOC102724927	-0.83	1.8	1.1061e-05	853
160	23467	NPTXR	neuronal pentraxin receptor	-0.83	1.8	6.2871e-10	125
161	64174	DPEP2	dipeptidase 2	-0.83	1.8	2.6893e-09	212
162	27346	TMEM97	transmembrane protein 97	-0.83	1.8	2.8923e-08	380
163	101929340	LOC101929340	uncharacterized LOC101929340	-0.83	1.8	3.4400e-07	568
164	23089	PEG10	paternally expressed 10	-0.82	1.8	2.0746e-07	532
165	54443	ANLN	anillin, actin binding protein	-0.82	1.8	8.5383e-04	1075
166	79582	SPAG16	sperm associated antigen 16	-0.82	1.8	1.0485e-10	93
167	79070	KDELC1	KDEL (Lys-Asp-Glu-Leu) containing 1	-0.82	1.8	3.1589e-07	560
168	81285	OR51E2	olfactory receptor, family 51, subfamily	-0.82	1.8	1.9359e-05	893
			E, member 2				
169	7296	TXNRD1	thioredoxin reductase 1	-0.82	1.8	3.9332e-08	395
170	25842	ASF1A	anti-silencing function 1A histone chap-	-0.82	1.8	1.7905e-09	185
			erone				
171	1760	DMPK	dystrophia myotonica-protein kinase	-0.81	1.8	3.0929e-07	559
172	58494	JAM2	junctional adhesion molecule 2	-0.81	1.8	2.8531e-08	377
173	1122	CHML	choroideremia-like (Rab escort protein	-0.81	1.8	1.2862e-06	675
			2)				
174	4239	MFAP4	microfibrillar-associated protein 4	-0.81	1.8	1.1302e-06	660
175	84952	CGNL1	cingulin-like 1	-0.81	1.8	1.0295e-06	651
176	23641	LDOC1	leucine zipper, down-regulated in can-	-0.81	1.8	5.1078e-10	120
			cer 1				
177	26059	ERC2	ELKS/RAB6-interacting/CAST family	-0.81	1.8	1.2305e-04	995
			member 2				
178	100505576	LINC00672	long intergenic non-protein coding	-0.81	1.8	2.8065e-08	376
			RNA 672				
179	56062	KLHL4	kelch-like family member 4	-0.81	1.8	1.4545e-06	684
180	8622	PDE8B	phosphodiesterase 8B	-0.81	1.7	4.4000e-07	591
181	23635	SSBP2	single-stranded DNA binding protein 2	-0.80	1.7	1.7523e-07	520
182	8988	HSPB3	heat shock 27kDa protein 3	-0.80	1.7	9.1650e-05	982
183	80312	TET1	tet methylcytosine dioxygenase 1	-0.80	1.7	2.5383e-08	369
184	139886	SPIN4	spindlin family, member 4	-0.80	1.7	7.3862e-09	271
185	113263	GLCCI1	glucocorticoid induced transcript 1	-0.80	1.7	2.5138e-07	544
186	80760	ITIH5	inter-alpha-trypsin inhibitor heavy	-0.80	1.7	1.6786e-06	702
			chain family, member 5				
187	320	APBA1	amyloid beta (A4) precursor protein-	-0.80	1.7	6.6299e-07	620
4.000	100111		binding, family A, member 1			1.0.000	4070
188	120114	FAT3	FAT atypical cadherin 3	-0.80	1.7	4.3688e-04	1058
189	2239	GPC4	glypican 4	-0.80	1.7	5.7280e-09	250
190	729082	OIP5-AS1	OIP5 antisense RNA 1	-0.79	1.7	2.1446e-05	902
191	857	CAV1	caveolin 1, caveolae protein, 22kDa	-0.79	1.7	1.4717e-07	509

Table 8 – continued from previous page

		1 41	sie o continued nom previous page				
192	29116	MYLIP	myosin regulatory light chain interact-	-0.79	1.7	8.2854e-04	1073
102	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	CAMK2C	algium /almodulin dependent protein	0.70	17	8 50870 00	281
195	010	CAMK2G	kinase II gamma	-0.79	1.1	0.09070-09	201
194	2296	FOXC1	forkhead box C1	-0.79	1.7	1.1821e-06	667
195	2332	FMR1	fragile X mental retardation 1	-0.79	1.7	1.5830e-12	25
196	170691	ADAMTS17	ADAM metallopeptidase with throm-	-0.79	1.7	4.4745e-06	781
			bospondin type 1 motif, 17				
197	6769	STAC	SH3 and cysteine rich domain	-0.79	1.7	8.4682e-07	636
198	128977	C22orf39	chromosome 22 open reading frame 39	-0.79	1.7	3.2060e-09	225
199	5239	PGM5	phosphoglucomutase 5	-0.79	1.7	1.4327e-07	507
200	144165	PRICKLE1	prickle homolog 1 (Drosophila)	-0.79	1.7	1.3053e-08	308
201	32	ACACB	acetyl-CoA carboxylase beta	-0.79	1.7	4.1649e-07	587
202	7026	NR2F2	nuclear receptor subfamily 2, group F,	-0.79	1.7	1.5626e-06	694
			member 2				
203	195828	ZNF367	zinc finger protein 367	-0.78	1.7	2.4547e-05	910
204	657	BMPR1A	bone morphogenetic protein receptor,	-0.78	1.7	7.0464e-10	133
			type IA				
205	10370	CITED2	Cbp/p300-interacting transactivator,	-0.78	1.7	6.2959e-06	805
			with Glu/Asp-rich carboxy-terminal				
200			domain, 2			H 0 0 0 H 0 0	
206	133746	JMY	junction mediating and regulatory pro-	-0.78	1.7	7.9835e-08	451
	0.40 50		tein, p53 cofactor			1 0000 00	
207	84056	KATNALI	katanın p60 subunit A-like 1	-0.78	1.7	1.3990e-08	313
208	148534	TMEM56	transmembrane protein 56	-0.78	1.7	1.6004e-12	26
209	26037	SIPAILI	1 like 1	-0.78	1.7	1.9038e-09	192
210	26084	ARHGEF26	Rho guanine nucleotide exchange factor	-0.77	1.7	1.4437e-04	1003
			(GEF) 26				
211	84131	CEP78	centrosomal protein 78kDa	-0.77	1.7	3.9863e-09	235
212	94274	PPP1R14A	protein phosphatase 1, regulatory (in-	-0.77	1.7	8.5608e-08	457
			hibitor) subunit 14A				
213	6444	SGCD	sarcoglycan, delta (35kDa dystrophin-	-0.77	1.7	1.5069e-07	513
			associated glycoprotein)				
214	119504	ANAPC16	anaphase promoting complex subunit	-0.77	1.7	6.1655e-10	123
			16				
215	84253	GARNL3	GTPase activating Rap/RanGAP	-0.77	1.7	2.9565e-08	382
			domain-like 3				
216	55672	NBPF1	neuroblastoma breakpoint family,	-0.77	1.7	2.5003e-05	913
0.1 -	250222	COMPA	member 1			1 1 10 5 0.0	
217	259230	SGMS1	sphingomyelin synthase 1	-0.77	1.7	1.1495e-06	662
218	28978	TMEM14A	transmembrane protein 14A	-0.77	1.7	2.2620e-07	537
219	2261	FGFR3	hbroblast growth factor receptor 3	-0.77	1.7	4.9295e-08	413
220	26273	FBX03	F-box protein 3	-0.77	1.7	4.4253e-10	112
221	9891	NUAKI	NUAK tamily, SNF1-like kinase, 1	-0.77	1.7	5.5375e-07	609
222	5137	PDEIC	pnosphodiesterase IC, calmodulin-	-0.77	1.7	(.5922e-04	1069
000	6410	CEUNIAD	Gependent (UKDa	0.70	1 🗁	1 5010. 00	170
223	6419	SEI MAR	SE1 domain and mariner transposase	-0.76	1.7	1.5819e-09	178
224	282006	BBM00	RNA binding motif protein 20	0.76	17	3 97160 06	750
224	202990 55857		kiguna controsomal protein	-0.70	1.1	0.85850.09	109
220	0469	RAGAT 2	RAS protein activator like 2	-0.70	1.7	2 02010 06	409 717
440	5404	10107112	1 1010 protoni activator fike 2	-0.10	1.1	2.02310-00	1 1 1

T 1 1 0		<i>c</i>		
Table 8 –	 continued 	trom	previous	nage
rubic o	continueu		previous	Pape

		Idi	ble 6 – continued from previous page				
227	6920	TCEA3	transcription elongation factor A (SII), 3	-0.76	1.7	3.2572e-05	929
228	1296	COL8A2	collagen, type VIII, alpha 2	-0.76	1.7	4.7990e-07	600
229	151525	WDSUB1	WD repeat, sterile alpha motif and U-	-0.76	1.7	1.1749e-07	488
			box domain containing 1				
230	25907	TMEM158	transmembrane protein 158	-0.76	1.7	1.0774e-08	294
			(gene/pseudogene)				
231	10912	GADD45G	growth arrest and DNA-damage-	-0.76	1.7	1.0725e-04	988
		DDMGa	inducible, gamma				
232	27303	RBMS3	RNA binding motif, single stranded in-	-0.76	1.7	4.6676e-07	597
000	110470		teracting protein 3	0.70	1 7	0.0100.07	690
233	112470	PRR12 CCDD9	proline-rich transmembrane protein 2	-0.76	1.7	8.2183e-07	632
234	1400 0515	USRP2	cysteme and glycine-rich protein 2	-0.76	1.7	1.3402e-11	48 520
233	<u> </u>	TEDD9	Integrin, aipita 10	-0.70	1.7	2.2703e-07	1010
230	1029	IFDP2	ization partner 2)	-0.75	1.1	1.5979e-04	1010
237	57544	TXNDC16	thioredoxin domain containing 16	-0.75	17	1.68470-08	330
231	4199	ME1	malic enzyme 1 NADP $(+)$ -dependent	-0.75	1.7	1.0047C-00	484
200	4155		cytosolic	-0.10	1.1	1.12200-01	101
239	8544	PIR	pirin (iron-binding nuclear protein)	-0.75	1.7	7.7172e-08	448
240	55089	SLC38A4	solute carrier family 38, member 4	-0.75	1.7	3.5937e-06	767
241	55107	ANO1	anoctamin 1, calcium activated chloride	-0.75	1.7	2.5724e-06	732
			channel				
242	8736	MYOM1	myomesin 1	-0.75	1.7	4.2971e-08	404
243	5023	P2RX1	purinergic receptor P2X, ligand-gated	-0.75	1.7	3.5697e-06	766
			ion channel, 1				
244	7275	TUB	tubby bipartite transcription factor	-0.75	1.7	1.1427e-06	661
245	64780	MICAL1	microtubule associated monooxy-	-0.75	1.7	6.1608e-08	426
			genase, calponin and LIM domain				
			containing 1				
246	84293	FAM213A	family with sequence similarity 213,	-0.75	1.7	1.6563e-06	699
0.47	0005	DID9D	member A	0.75	1 7	1.0002.00	007
247	8005	EIF3F	eukaryotic translation initiation factor	-0.75	1.7	1.0963e-08	297
249	25940	DADM1	5, Subulit F	0.75	17	1 25400 02	1095
240	23849	FANMI	prostate androgen-regulated much-like	-0.75	1.1	1.20490-00	1065
249	8801	SUCLG2	succinate-CoA ligase GDP-forming	-0.74	17	1 1735e-07	487
210	0001	500102	beta subunit	-0.14	1.1	1.11000-01	401
250	862	RUNX1T1	runt-related transcription factor 1:	-0.74	1.7	4.0632e-06	774
-00	001	100101111	translocated to. 1 (cvclin D-related)	0.1.1	1.11	1.00020.00	
251	400916	CHCHD10	coiled-coil-helix-coiled-coil-helix do-	-0.74	1.7	2.2912e-08	359
			main containing 10				
252	348093	RBPMS2	RNA binding protein with multiple	-0.74	1.7	4.6195e-07	596
			splicing 2				
253	114876	OSBPL1A	oxysterol binding protein-like 1A	-0.74	1.7	5.8206e-09	253
254	10351	ABCA8	ATP-binding cassette, sub-family A	-0.74	1.7	1.1413e-03	1084
			(ABC1), member 8				
255	79822	ARHGAP28	Rho GTPase activating protein 28	-0.74	1.7	4.5534e-06	783
256	55553	SOX6	SRY (sex determining region Y)-box 6	-0.74	1.7	1.5115e-07	514
257	84858	ZNF503	zinc finger protein 503	-0.74	1.7	4.2182e-05	939
258	441094	NR2F1-AS1	NR2F1 antisense RNA 1	-0.74	1.7	3.8709e-06	773

Table 8 – continued from previous page

		101	ble o continued nom previous page				
259	64172	OSGEPL1	O-sialoglycoprotein endopeptidase-like	-0.74	1.7	3.1651e-08	386
260	285671	RNF180	ring finger protein 180	-0.74	17	8 5662e-07	638
260	23492	CBX7	chromobox homolog 7	-0.74	1.7	9.8954e-07	648
262	26353	HSPB8	heat shock 22kDa protein 8	-0.74	1.7	4 2852e-06	779
262	57639	CCDC146	coiled-coil domain containing 146	-0.74	1.7	3.1227e-06	752
200 264	65997	BASL11B	BAS-like family 11 member B	-0.73	1.7	1.6199e-09	181
265	10006/	TMEM61	transmembrane protein 61	-0.73	1.7	3.8180-06	770
200	10966	RAB40B	BAB40B member BAS oncogene fam-	-0.73	1.7	1.0555e-07	170
200	10500	1010400	ilv	-0.15	1.1	1.00000-01	410
267	/338	MOCS2	molybdenum cofactor synthesis 2	-0.73	17	5 12450-09	245
268	58155	PTRP2	polypyrimidine tract binding protein 2	-0.73	1.7	3.1450e-09	240
260	23284	LPHN3	latrophilin 3	-0.73	1.7	8.00850-05	980
203 270	0070	LDR2	LIM domain binding 2	-0.73	1.7	2 34750-06	724
270	91612	CHUBC1	churchill domain containing 1	-0.73	1.7	2.5475C-00	10/18
271	79038	ZEVVE21	zinc finger EVVE domain containing	-0.73	1.7	5.8340e-06	802
212	19030		21	-0.15	1.1	5.05400-00	802
273	154791	C7orf55	chromosome 7 open reading frame 55	-0.73	1.7	9.4758e-08	466
274	196294	IMMP1L	IMP1 inner mitochondrial membrane	-0.72	1.7	1.0131e-07	472
			peptidase-like (S. cerevisiae)				
275	3275	PRMT2	protein arginine methyltransferase 2	-0.72	1.6	1.2414e-09	165
276	63920	ZBED8	zinc finger, BED-type containing 8	-0.72	1.6	1.0490e-10	94
277	1123	CHN1	chimerin 1	-0.72	1.6	1.4751e-06	687
278	151556	GPR155	G protein-coupled receptor 155	-0.72	1.6	3.1220e-05	926
279	5108	PCM1	pericentriolar material 1	-0.72	1.6	2.5744e-07	547
280	222663	SCUBE3	signal peptide, CUB domain, EGF-like	-0.72	1.6	2.7288e-07	551
			3				
281	121227	LRIG3	leucine-rich repeats and	-0.72	1.6	7.2298e-07	624
			immunoglobulin-like domains 3				
282	5999	RGS4	regulator of G-protein signaling 4	-0.71	1.6	1.1219e-03	1083
283	57037	ANKMY2	ankyrin repeat and MYND domain con- taining 2	-0.71	1.6	6.7895e-10	130
284	84078	KBTBD7	kelch repeat and BTB (POZ) domain	-0.71	1.6	1.9239e-05	892
			containing 7				
285	6210	RPS15A	ribosomal protein S15a	-0.71	1.6	1.0824e-09	158
286	100505687	LINC00888	long intergenic non-protein coding	-0.71	1.6	9.3559e-07	645
			RNA 888				
287	2946	GSTM2	glutathione S-transferase mu 2 (muscle)	-0.71	1.6	2.3767e-05	909
288	5764	PTN	pleiotrophin	-0.71	1.6	4.1942e-04	1055
289	6263	RYR3	ryanodine receptor 3	-0.71	1.6	5.1487e-06	794
290	80333	KCNIP4	Kv channel interacting protein 4	-0.71	1.6	5.0584e-06	791
291	51309	ARMCX1	armadillo repeat containing, X-linked 1	-0.71	1.6	7.9210e-07	629
292	30061	SLC40A1	solute carrier family 40 (iron-regulated	-0.71	1.6	1.5766e-05	875
	1.0.5.2.1		transporter), member 1				
293	10395	DLC1	DLC1 Rho GTPase activating protein	-0.71	1.6	7.7395e-09	274
294	2170	FABP3	fatty acid binding protein 3, muscle	-0.70	1.6	1.7209e-05	882
			and heart (mammary-derived growth				
007	01550	DLACCICL	inhibitor)	0 =0	1.0	0.0000 000	00.1
295	81579	PLA2G12A	pnospholipase A2, group XIIA	-0.70	1.6	3.9090e-08	394
296	111	ADCY5	adenylate cyclase 5	-0.70	1.6	3.8543e-07	580
297	10559	SLC35A1	solute carrier family 35 (CMP-sialic	-0.70	1.6	1.9652e-07	529
1			acid transporter), member A1				

T 1 1 0		<i>c</i>	•	
Table 8 – c	continued	trom	previous	page

		Idl	ble o – continued from previous page				
298	9132	KCNQ4	potassium voltage-gated channel, KQT-like subfamily, member 4	-0.70	1.6	1.5562e-06	692
299	10480	EIF3M	eukaryotic translation initiation factor 3 subunit M	-0.70	1.6	1.1041e-08	298
300	20028		ATPase family AAA domain contain-	-0.70	16	1 37/50-09	172
000	25020	MIMD2	ing 2	-0.10	1.0	1.01400-05	112
301	55425	GPALPP1	GPALPP motifs containing 1	-0.70	1.6	8.4190e-09	279
302	51449	PCYOX1	prenylcysteine oxidase 1	-0.70	1.6	4.5226e-07	593
303	1429	CRYZ	crystallin, zeta (quinone reductase)	-0.69	1.6	2.9173e-05	921
304	85460	ZNF518B	zinc finger protein 518B	-0.69	1.6	1.5881e-06	695
305	222236	NAPEPLD	N-acyl phosphatidylethanolamine	-0.69	1.6	2.7034e-08	373
			phospholipase D				
306	11215	AKAP11	A kinase (PRKA) anchor protein 11	-0.69	1.6	4.8711e-10	115
307	121536	AEBP2	AE binding protein 2	-0.69	1.6	2.2273e-10	107
308	253782	CERS6	ceramide synthase 6	-0.69	1.6	3.3948e-05	932
309	6262	RYR2	ryanodine receptor 2 (cardiac)	-0.69	1.6	4.4660e-05	946
310	57562	KIAA1377	KIAA1377	-0.69	1.6	3.3749e-07	565
311	57659	ZBTB4	zinc finger and BTB domain containing	-0.69	1.6	1.4369e-07	508
			4				
312	79694	MANEA	mannosidase, endo-alpha	-0.69	1.6	4.0382e-08	398
313	57584	ARHGAP21	Rho GTPase activating protein 21	-0.69	1.6	8.0014e-07	630
314	100507303	SNHG19	small nucleolar RNA host gene 19 (non-	-0.69	1.6	9.4718e-07	646
			protein coding)				
315	27101	CACYBP	calcyclin binding protein	-0.69	1.6	3.8389e-07	579
316	3206	HOXA10	homeobox A10	-0.69	1.6	1.1549e-06	663
317	51175	TUBE1	tubulin, epsilon 1	-0.69	1.6	3.4171e-04	1044
318	4594	MUT	methylmalonyl CoA mutase	-0.69	1.6	6.8588e-10	132
319	56981	PRDM11	PR domain containing 11	-0.69	1.6	3.0209e-05	924
320	113612	CYP2U1	cytochrome P450, family 2, subfamily	-0.69	1.6	3.9097e-09	234
			U, polypeptide 1				
321	845	CASQ2	calsequestrin 2 (cardiac muscle)	-0.68	1.6	3.0709e-08	384
322	25950	RWDD3	RWD domain containing 3	-0.68	1.6	1.2516e-09	166
323	324	APC	adenomatous polyposis coli	-0.68	1.6	1.4315e-09	175
324	23230	VPS13A	vacuolar protein sorting 13 homolog A	-0.68	1.6	6.4625 e- 04	1068
			(S. cerevisiae)				
325	5274	SERPINI1	serpin peptidase inhibitor, clade I (neu-	-0.68	1.6	4.4019e-05	944
			roserpin), member 1				
326	3752	KCND3	potassium voltage-gated channel, Shal-	-0.68	1.6	6.8950e-05	967
	0.150	CITOD CD	related subfamily, member 3		1.0		
327	6450	SH3BGR	SH3 domain binding glutamate-rich	-0.68	1.6	7.2043e-06	822
	-0.011	1 0000	protein	0.00	1.0	1 0001 0	10.1
328	79611	ACSS3	acyl-CoA synthetase short-chain family	-0.68	1.6	1.3291e-07	494
	4990	N ENT 1	member 3	0.00	1.0	1 1107 00	650
329	4330	MIN I	meningioma (disrupted in balanced	-0.68	1.6	1.1187e-06	658
220	11070	VI D10	transiocation) 1 Kruppel like factor 19	0.69	1.0	4 7206 - 00	0.40
33U 221	11278	KLF12 CMADC	Kruppel-like factor 12	-0.68	1.0	4.73066-09	240
001 000	4091		SwiAD family member 0	-0.08	1.0	2.01700-00	(33 207
352 222	1102 26275	UND	2 hydrogygiabuturyl CoA bydrologo	-0.07	1.0	5.99090-08	397
202	20270	C15crf40	abromosomo 15 open reading france 40	-0.07	1.0	7 50360 00	040 079
<u>304</u> 225	120207 51101	7C2HC1A	cinomosome 15 open reading frame 40	-0.07	1.0	2.00340.06	213
555	91101	2021101A	zine inger, 02110-type containing TA	-0.07	1.0	2.0034e-00	(14

Table 8 – continued from previous page

		101	ne o continued nom previous page				
336	56890	MDM1	Mdm1 nuclear protein homolog	-0.67	1.6	1.5481e-08	322
337	196047	EMX20S	EMX2 opposite strand/antisense BNA	-0.67	1.6	4.0207_{0-11}	60
338	781	CACNA2D1	calcium channel voltage-dependent al-	-0.67	1.0	2.02070-11	536
000	101	OnOIM2D1	pha 2/delta subunit 1	-0.01	1.0	2.22520-01	000
339	9324	HMGN3	high mobility group nucleosomal bind-	-0.67	16	4 3783e-11	63
000	0021	minario	ing domain 3	0.01	1.0	1.01000 11	00
340	7341	SUMO1	small ubiquitin-like modifier 1	-0.67	1.6	7.4987e-08	447
341	283807	FBXL22	F-box and leucine-rich repeat protein	-0.67	1.6	2.1651e-05	904
			22				
342	221895	JAZF1	JAZF zinc finger 1	-0.67	1.6	4.6371e-09	238
343	10040	TOM1L1	target of myb1 (chicken)-like 1	-0.66	1.6	6.7034e-07	621
344	51306	FAM13B	family with sequence similarity 13,	-0.66	1.6	1.7197e-08	333
			member B				
345	10916	MAGED2	melanoma antigen family D, 2	-0.66	1.6	1.2705e-08	305
346	2944	GSTM1	glutathione S-transferase mu 1	-0.66	1.6	1.5063e-04	1006
347	92126	DSEL	dermatan sulfate epimerase-like	-0.66	1.6	6.6919e-05	964
348	100652772	NNT-AS1	NNT antisense RNA 1	-0.66	1.6	5.6101e-08	420
349	2036	EPB41L1	erythrocyte membrane protein band	-0.66	1.6	2.5694e-07	545
			4.1-like 1				
350	55600	ITLN1	intelectin 1 (galactofuranose binding)	-0.66	1.6	5.0720e-05	949
351	57326	PBXIP1	pre-B-cell leukemia homeobox interact-	-0.66	1.6	4.1911e-08	401
			ing protein 1				
352	100131067	CKMT2-AS1	CKMT2 antisense RNA 1	-0.66	1.6	3.2491e-06	758
353	7088	TLE1	transducin-like enhancer of split 1	-0.66	1.6	4.3451e-07	590
054		LIDEALA	(E(sp1) homolog, Drosophila)	0.00	4.0		
354	7332	UBE2L3	ubiquitin-conjugating enzyme E2L 3	-0.66	1.6	2.6547e-07	550
355	64968	MRPS6	mitochondrial ribosomal protein S6	-0.66	16	[729e-08	301
050	04500			0.00	1.0	1.11200 00	501
356	285237	C3orf38	chromosome 3 open reading frame 38	-0.66	1.6	4.4402e-06	780
356 357	285237 222865	C3orf38 TMEM130	chromosome 3 open reading frame 38 transmembrane protein 130	-0.66 -0.66	1.6 1.6	4.4402e-06 2.0504e-08	780 346
356 357 358 250	285237 222865 2857 200004	C3orf38 TMEM130 GPR34	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34	-0.66 -0.66 -0.66	1.6 1.6 1.6	$\begin{array}{c} 4.4402e{-}06\\ \hline 2.0504e{-}08\\ \hline 2.8642e{-}07\\ \hline 1.0241 \\ 11\end{array}$	780 346 553
356 357 358 359	285237 222865 2857 90624	C3orf38 TMEM130 GPR34 LYRM7	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7	-0.66 -0.66 -0.66 -0.66	1.6 1.6 1.6 1.6 1.6	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11	
356 357 358 359 360	285237 222865 2857 90624 11099	C3orf38 TMEM130 GPR34 LYRM7 PTPN21	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non-	-0.66 -0.66 -0.66 -0.66 -0.66	$ \begin{array}{r} 1.6 \\ 1$	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08	$ \begin{array}{r} $
356 357 358 359 360	285237 222865 2857 90624 11099	C3orf38 TMEM130 GPR34 LYRM7 PTPN21	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin acceptance and modulation	-0.66 -0.66 -0.66 -0.66 -0.66	1.6 1.6 1.6 1.6 1.6 1.6 1.6	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08	301 780 346 553 44 370
$ \begin{array}{r} 356 \\ 357 \\ 358 \\ 359 \\ 360 \\ 361 \\ \end{array} $	285237 222865 2857 90624 11099 23066	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putativo)	-0.66 -0.66 -0.66 -0.66 -0.66 -0.66	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06	301 780 346 553 44 370 743
$ \begin{array}{r} 356 \\ 357 \\ 358 \\ 359 \\ 360 \\ 361 \\ 362 \\ 362 \end{array} $	285237 222865 2857 90624 11099 23066 84259	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1_defective in cullin neddylation	-0.66 -0.66 -0.66 -0.66 -0.66 -0.66	$ \begin{array}{c} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ \end{array} $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09	$ \begin{array}{r} 331 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ \end{array} $
356 357 358 359 360 361 362	285237 222865 2857 90624 11099 23066 84259	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1 domain containing 5	-0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09	$ \begin{array}{r} 3311 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ \end{array} $
356 357 358 359 360 361 362 362 363	285237 222865 2857 90624 11099 23066 84259 22929	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1	-0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66	$ \begin{array}{r} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ \end{array} $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11	780 346 553 44 370 743 220 78
356 357 358 359 360 361 362 363 363 364	$ \begin{array}{r} 285237 \\ 222865 \\ 2857 \\ 90624 \\ 11099 \\ 23066 \\ 84259 \\ 22929 \\ 10656 \\ \end{array} $	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDBBS3	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing BNA binding	$\begin{array}{c} -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ -0.65 \\ -0.65 \\ -0.65 \end{array}$	$ \begin{array}{r} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ \end{array} $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ \end{array} $
356 357 358 359 360 361 362 363 364	285237 222865 2857 90624 11099 23066 84259 22929 10656	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07	$ \begin{array}{r} 3361 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 572 \end{array} $
356 357 358 359 360 361 362 363 364 363	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Trover syn-	$\begin{array}{c} -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ -0.66 \\ \hline \\ -0.66 \\ \hline \\ -0.65 \\ -0.65 \\ \hline \\ -0.65 \\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ \end{array} $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08	$ \begin{array}{r} 3361 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ \end{array} $
356 357 358 359 360 361 362 363 364 365	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome)	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ \end{array} $
356 357 358 359 360 361 361 362 363 364 365 366	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ \end{array} $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 1.6211e-08	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ \end{array} $
$\begin{array}{r} 356\\ 357\\ 358\\ 359\\ 360\\ \\ 361\\ \\ 362\\ \\ 363\\ 364\\ \\ 365\\ \\ 366\\ 367\\ \end{array}$	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07	$ \begin{array}{r} 3361 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ \end{array} $
$\begin{array}{r} 356\\ 357\\ 358\\ 359\\ 360\\ \\ \\ 361\\ \\ 362\\ \\ \\ 363\\ 364\\ \\ \\ 365\\ \\ 366\\ \\ 367\\ \\ 368\\ \end{array}$	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ 155 \\ \end{array} $
356 357 358 359 360 361 362 363 364 363 364 365 366 367 368 369	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186 22841	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7 RAB11FIP2	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7 RAB11 family interacting protein 2	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ \hline \\ -0.65\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10 5.0336e-11	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ 155 \\ 71 \\ \end{array} $
356 357 358 359 360 361 362 363 364 365 366 366 366 368 369	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186 22841	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7 RAB11FIP2	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7 RAB11 family interacting protein 2 (class I)	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{r} 1.6 \\ $	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10 5.0336e-11	$ \begin{array}{r} 3341 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ 155 \\ 71 \\ 71 $
356 357 358 359 360 361 362 363 364 365 366 365 366 367 368 369 370	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186 22841 22873	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7 RAB11FIP2 DZIP1	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7 RAB11 family interacting protein 2 (class I) DAZ interacting zinc finger protein 1	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{c} 1.6 \\ 1.$	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10 5.0336e-11 9.9691e-06	$ \begin{array}{r} 346 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 220 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ 155 \\ 71 \\ 843 \end{array} $
356 357 358 359 360 361 362 363 364 365 365 366 367 368 369 370 371	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186 22841 22873 23321	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7 RAB11FIP2 DZIP1 TRIM2	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7 RAB11 family interacting protein 2 (class I) DAZ interacting zinc finger protein 1 tripartite motif containing 2	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ -0.65\\ \hline \\ -0.65\\ -0.65\\ -0.65\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{c} 1.6 \\ 1.$	4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10 5.0336e-11 9.9691e-06 4.9355e-09	$ \begin{array}{r} 346 \\ 780 \\ 346 \\ 553 \\ 44 \\ 370 \\ 743 \\ 743 \\ 220 \\ 78 \\ 572 \\ 316 \\ 324 \\ 562 \\ 155 \\ 71 \\ 843 \\ 243 \\ \end{array} $
356 357 358 359 360 361 362 363 364 365 366 367 368 369 371 372	285237 222865 2857 90624 11099 23066 84259 22929 10656 23111 93134 51318 84186 22841 22873 23321 375248	C3orf38 TMEM130 GPR34 LYRM7 PTPN21 CAND2 DCUN1D5 SEPHS1 KHDRBS3 SPG20 ZNF561 MRPL35 ZCCHC7 RAB11FIP2 DZIP1 TRIM2 ANKRD36	chromosome 3 open reading frame 38 transmembrane protein 130 G protein-coupled receptor 34 LYR motif containing 7 protein tyrosine phosphatase, non- receptor type 21 cullin-associated and neddylation- dissociated 2 (putative) DCN1, defective in cullin neddylation 1, domain containing 5 selenophosphate synthetase 1 KH domain containing, RNA binding, signal transduction associated 3 spastic paraplegia 20 (Troyer syn- drome) zinc finger protein 561 mitochondrial ribosomal protein L35 zinc finger, CCHC domain containing 7 RAB11 family interacting protein 2 (class I) DAZ interacting zinc finger protein 1 tripartite motif containing 2 ankyrin repeat domain 36	$\begin{array}{c} -0.66\\ -0.66\\ -0.66\\ -0.66\\ -0.66\\ \hline \\ -0.66\\ \hline \\ -0.65\\ \hline \end{array}$	$ \begin{array}{c} 1.6 \\ 1.$	1.1120000 4.4402e-06 2.0504e-08 2.8642e-07 1.0341e-11 2.5529e-08 2.8418e-06 2.9732e-09 7.0139e-11 3.5687e-07 1.4851e-08 3.2009e-07 9.9029e-10 5.0336e-11 9.9691e-06 4.9355e-09 2.1765e-06	$\begin{array}{c} 301\\ \hline 780\\ \hline 780\\ \hline 346\\ \hline 553\\ \hline 44\\ \hline 370\\ \hline 743\\ \hline 220\\ \hline 743\\ \hline 220\\ \hline 78\\ \hline 572\\ \hline 316\\ \hline 324\\ \hline 562\\ \hline 155\\ \hline 71\\ \hline 843\\ \hline 243\\ \hline 719\\ \end{array}$

Table 8 – continued from previous page

374	2195	FAT1	FAT atypical cadherin 1	-0.65	1.6	2.4004e-08	363
375	56899	ANKS1B	ankyrin repeat and sterile alpha motif	-0.65	1.6	2.3054e-08	360
			domain containing 1B				
376	401261	FLJ38717	FLJ38717 protein	-0.65	1.6	1.6154e-05	878
377	1756	DMD	dystrophin	-0.65	1.6	1.4985e-08	317
378	154807	VKORC1L1	vitamin K epoxide reductase complex,	-0.64	1.6	5.9839e-12	39
			subunit 1-like 1				
379	9666	DZIP3	DAZ interacting zinc finger protein 3	-0.64	1.6	1.0125e-07	471
380	29087	THYN1	thymocyte nuclear protein 1	-0.64	1.6	8.2132e-11	84
381	5747	PTK2	protein tyrosine kinase 2	-0.64	1.6	1.1417e-07	486
382	2537	IFI6	interferon, alpha-inducible protein 6	-0.64	1.6	3.3122e-04	1043
383	8706	B3GALNT1	beta-1,3-N-	-0.64	1.6	3.6579e-06	768
			acetylgalactosaminyltransferase 1				
			(globoside blood group)				
384	79745	CLIP4	CAP-GLY domain containing linker	-0.64	1.6	1.5739e-05	874
			protein family, member 4				
385	116228	COX20	COX20 cytochrome C oxidase assembly	-0.64	1.6	1.4886e-06	688
			factor				
386	114884	OSBPL10	oxysterol binding protein-like 10	-0.64	1.6	2.4686e-06	728
387	9865	TRIL	TLR4 interactor with leucine-rich re-	-0.64	1.6	2.0561e-04	1020
			peats				
388	92249	LINC01278	long intergenic non-protein coding	-0.64	1.6	9.5816e-07	647
			RNA 1278				
389	143503	OR51E1	olfactory receptor, family 51, subfamily	-0.64	1.6	9.3404e-04	1078
			E, member 1				
390	2982	GUCY1A3	guanylate cyclase 1, soluble, alpha 3	-0.64	1.6	6.5052 e-05	963
391	2926	GRSF1	G-rich RNA sequence binding factor 1	-0.64	1.6	5.9538e-08	424
392	130507	UBR3	ubiquitin protein ligase E3 component	-0.64	1.6	4.4264e-08	406
			n-recognin 3 (putative)				
393	29901	SAC3D1	SAC3 domain containing 1	-0.64	1.6	4.6088e-06	786
394	80036	TRPM3	transient receptor potential cation	-0.64	1.6	9.8509e-06	841
			channel, subfamily M, member 3				
395	92270	ATP6AP1L	ATPase, H+ transporting, lysosomal	-0.64	1.6	3.1252e-06	753
			accessory protein 1-like				
396	57558	USP35	ubiquitin specific peptidase 35	-0.64	1.6	1.1153e-05	854
397	55833	UBAP2	ubiquitin associated protein 2	-0.64	1.6	4.3882e-08	405
398	9055	PRC1	protein regulator of cytokinesis 1	-0.64	1.6	2.4083e-03	1090
399	84553	FAXC	failed axon connections homolog	-0.63	1.5	1.9253e-06	710
			(Drosophila)				
400	57494	RIMKLB	ribosomal modification protein rimK-	-0.63	1.5	9.8437e-06	840
			like family member B				
401	9104	RGN	regucalcin	-0.63	1.5	6.9570e-06	815
402	22903	BTBD3	BTB (POZ) domain containing 3	-0.63	1.5	7.5761e-07	627
403	219287	AMER2	APC membrane recruitment protein 2	-0.63	1.5	2.7907e-04	1030
404	6815	STYX	serine/threonine/tyrosine interacting	-0.63	1.5	4.8673e-07	601
			protein				
405	27247	NFU1	NFU1 iron-sulfur cluster scaffold	-0.63	1.5	1.6428e-08	328
406	79956	ERMP1	endoplasmic reticulum metallopepti-	-0.63	1.5	2.1722e-08	352
	22272	LDING	dase 1	0.00		0.4000.000	
407	22859	LPHN1	latrophilm 1	-0.63	1.5	2.1393e-05	901
408	4968	OGG1	8-oxoguanine DNA glycosylase	-0.63	1.5	3.0209e-09	221
409	9240	PNMA1	paraneoplastic Ma antigen 1	-0.63	1.5	1.5044e-07	512

Table 8 – continued from previous page

		Idi	ble o – continueu from previous page				
410	10675	CSPG5	chondroitin sulfate proteoglycan 5 (neuroglycan C)	-0.62	1.5	3.2551e-05	928
411	348235	SKA2	spindle and kinetochore associated	-0.62	1.5	1.8926e-09	190
		april 1	complex subunit 2				
412	9946	CRYZLI	crystallin, zeta (quinone reductase)-like	-0.62	1.5	8.3528e-07	635
413	64927	TTC23	tetratricopeptide repeat domain 23	-0.62	1.5	8.6809e-04	1076
414	9767	JADE3	jade family PHD finger 3	-0.62	1.5	1.0349e-09	156
415	79752	ZFAND1	zinc finger, AN1-type domain 1	-0.62	1.5	8.3549e-08	455
416	90843	TCEAL8	transcription elongation factor A (SII)-	-0.62	1.5	1.5841e-09	179
			like 8				
417	3209	HOXA13	homeobox A13	-0.62	1.5	4.4886e-05	947
418	7881	KCNAB1	potassium voltage-gated channel,	-0.62	1.5	1.0344e-05	849
			shaker-related subfamily, beta member				
			1				
419	5414	SEPT4	septin 4	-0.62	1.5	1.0268e-05	848
420	3417	IDH1	isocitrate dehvdrogenase 1 (NADP+).	-0.62	1.5	3.5003e-04	1047
_			soluble		-		
421	54741	LEPROT	leptin receptor overlapping transcript	-0.62	1.5	1.9565e-06	711
422	7103	TSPAN8	tetraspanin 8	-0.62	1.5	7.9667e-04	1072
423	23336	SYNM	synemin intermediate filament protein	-0.62	1.5	6.9347e-06	814
424	3176	HNMT	histamine N-methyltransferase	-0.62	1.5	3.8160e-07	577
425	412	STS	steroid sulfatase (microsomal) isozyme	-0.62	1.5	1.9865e-06	712
420	412	515	S	0.02	1.0	1.00000-00	112
426	150864	FAM117B	family with sequence similarity 117,	-0.62	1.5	1.2702e-05	861
			member B				
427	3730	KAL1	Kallmann syndrome 1 sequence	-0.62	1.5	1.4655e-03	1087
428	54756	IL17RD	interleukin 17 receptor D	-0.62	1.5	6.0077e-04	1065
429	9474	ATG5	autophagy related 5	-0.62	1.5	7.5753e-10	138
430	152926	PPM1K	protein phosphatase, Mg2+/Mn2+ de-	-0.62	1.5	1.1192e-06	659
			pendent, 1K				
431	6502	SKP2	S-phase kinase-associated protein 2, E3	-0.62	1.5	5.1397e-06	793
			ubiquitin protein ligase				
432	6645	SNTB2	syntrophin, beta 2 (dystrophin-	-0.62	1.5	1.7005e-05	881
			associated protein A1, 59kDa, basic				
			component 2)				
433	56271	BEX4	brain expressed, X-linked 4	-0.62	1.5	6.1849e-09	261
434	4833	NME4	NME/NM23 nucleoside diphosphate ki-	-0.61	1.5	1.2326e-06	670
			nase 4				
435	5701	PSMC2	proteasome (prosome, macropain) 26S	-0.61	1.5	2.1834e-08	354
			subunit, ATPase, 2				
436	80817	CEP44	centrosomal protein 44kDa	-0.61	1.5	1.1771e-09	162
437	79884	MAP9	microtubule-associated protein 9	-0.61	1.5	1.2364e-07	492
438	753	LDLRAD4	low density lipoprotein receptor class A	-0.61	1.5	5.2196e-05	951
			domain containing 4				
439	55120	FANCL	Fanconi anemia, complementation	-0.61	1.5	8.5485e-07	637
			group L				
440	57456	KIAA1143	KIAA1143	-0.61	1.5	1.3836e-07	499
441	29103	DNAJC15	DnaJ (Hsp40) homolog, subfamily C.	-0.61	1.5	1.4564e-05	870
			member 15				
442	79953	SYNDIG1	synapse differentiation inducing 1	-0.61	1.5	6.3695e-06	807
				1			

Table 8 – continued from previous page

		Id	ble o – continueu nom previous page				
443	23142	DCUN1D4	DCN1, defective in cullin neddylation	-0.61	1.5	1.7544e-08	335
			1, domain containing 4				
444	1410	CRYAB	crystallin, alpha B	-0.61	1.5	2.2314e-06	721
445	81624	DIAPH3	diaphanous-related formin 3	-0.61	1.5	8.0155e-05	972
446	23522	KAT6B	K(lysine) acetyltransferase 6B	-0.61	1.5	1.2928e-08	307
447	142940	TRUB1	TruB pseudouridine (psi) synthase fam-	-0.61	1.5	4.7591e-09	241
			ily member 1				
448	57545	CC2D2A	coiled-coil and C2 domain containing	-0.61	1.5	6.1561e-09	259
			2A				
449	153222	CREBRF	CREB3 regulatory factor	-0.61	1.5	3.2957e-05	930
450	27122	DKK3	dickkopf WNT signaling pathway in-	-0.61	1.5	9.9778e-06	844
			hibitor 3				
451	7329	UBE2I	ubiquitin-conjugating enzyme E2I	-0.61	1.5	2.9430e-07	555
452	4041	LRP5	low density lipoprotein receptor-related	-0.61	1.5	9.9913e-05	985
			protein 5				
453	5592	PRKG1	protein kinase, cGMP-dependent, type	-0.61	1.5	2.1388e-10	106
			I				
454	8667	EIF3H	eukaryotic translation initiation factor	-0.61	1.5	5.4471e-04	1063
			3, subunit H				
455	5549	PRELP	proline/arginine-rich end leucine-rich	-0.60	1.5	3.1216e-04	1037
			repeat protein				
456	56944	OLFML3	olfactomedin-like 3	-0.60	1.5	8.0817e-06	830
457	27018	NGFRAP1	nerve growth factor receptor (TN-	-0.60	1.5	6.4727e-08	435
			FRSF16) associated protein 1				
458	3764	KCNJ8	potassium inwardly-rectifying channel,	-0.60	1.5	3.9537e-04	1052
			subfamily J, member 8				
459	54876	DCAF16	DDB1 and CUL4 associated factor 16	-0.60	1.5	8.2429e-05	976
460	51069	MRPL2	mitochondrial ribosomal protein L2	-0.60	1.5	1.8958e-07	525
461	359948	IRF2BP2	interferon regulatory factor 2 binding	-0.60	1.5	5.6677e-05	955
100		(TIDDDD)	protein 2				
462	79901	CYBRD1	cytochrome b reductase 1	-0.60	1.5	7.3795e-06	823
463	51661	FKBP7	FK506 binding protein 7	-0.60	1.5	3.9869e-07	584
464	5217	PFN2	profilm 2	-0.60	1.5	6.3294e-07	618
465	11030	RBPMS	RNA binding protein with multiple	-0.60	1.5	7.0092e-06	819
100			splicing	0.00		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.04
466	57531	HACEI	HECT domain and ankyrin repeat con-	-0.60	1.5	2.3069e-08	361
107	0.1.100	CLID CO	taining E3 ubiquitin protein ligase 1	0.00	1 2	1.0450.05	10.0
467	64426	SUDS3	suppressor of defective silencing 3 ho-	-0.60	1.5	1.3479e-07	496
400	0175	CESTO	molog (S. cerevisiae)	0.00	1 5	4.0050.00	410
468	8175	SF3A2	splicing factor 3a, subunit 2, 66kDa	-0.60	1.5	4.8859e-08	412
469	11/583	PARD3B	par-3 family cell polarity regulator beta	-0.60	1.5	1.2312e-08	303
470	57396	ULK4	CDC-like kinase 4	-0.60	1.5	6.2490e-05	958
4/1	4128		Monoamine oxidase A	-0.60	1.5	3.1514e-03	1095
472	10632	AIP5L	AIP synthase, H+ transporting, mito-	-0.60	1.5	9.3012e-09	289
479	01599		chondrial Fo complex, subunit G	0.00	1 5	5 5000 10	100
473	81533	IIFGI	integrin alpha FG-GAP repeat contain-	-0.60	1.5	5.5969e-10	122
474	11160		DC4 and CEDC1 intersection must in 1	0.60	1 5	6 0869 - 00	420
4/4	5579	PDECA	r04 and SrKS1 interacting protein 1	-0.60	1.0	0.98020-08	439
410	00176	CDCD1	protein kinase O, alpha	-0.00	1.0	0.1779e-00 1.1745a.06	910
470	00170	5F3B1	SOCS box containing 1	-0.60	1.0	1.1749e-00	600

Table 8 – continued from previous page

477	9468	PCYT1B	phosphate cytidylyltransferase 1, choline, beta	-0.60	1.5	9.8659e-04	1080
478	9706	ULK2	unc-51 like autophagy activating kinase 2	-0.60	1.5	1.8753e-09	189
479	80823	BHLHB9	basic helix-loop-helix domain contain- ing, class B, 9	-0.60	1.5	1.7969e-09	187
480	9702	CEP57	centrosomal protein 57kDa	-0.60	1.5	1.4614e-06	686
481	339745	SPOPL	speckle-type POZ protein-like	-0.60	1.5	3.2375e-06	757
482	9910	RABGAP1L	RAB GTPase activating protein 1-like	-0.59	1.5	5.5083e-08	418
483	23588	KLHDC2	kelch domain containing 2	-0.59	1.5	1.9927e-06	713
484	274	BIN1	bridging integrator 1	-0.59	1.5	1.6381e-08	327
485	79710	MORC4	MORC family CW-type zinc finger 4	-0.59	1.5	6.4124e-06	808
486	5648	MASP1	mannan-binding lectin serine peptidase	-0.59	1.5	2.4820e-03	1092
			1 (C4/C2 activating component of Ra-				
			reactive factor)				
487	10486	CAP2	CAP, adenylate cyclase-associated pro-	-0.59	1.5	1.2691e-09	168
			tein, 2 (yeast)				
488	154043	CNKSR3	CNKSR family member 3	-0.59	1.5	1.8502e-05	887
489	85458	DIXDC1	DIX domain containing 1	-0.59	1.5	2.8309e-06	742
490	25934	NIPSNAP3A	nipsnap homolog 3A (C. elegans)	-0.59	1.5	5.2666e-05	953
491	10426	TUBGCP3	tubulin, gamma complex associated	-0.59	1.5	1.3881e-07	501
492	4139	MARK1	MAP/microtubule affinity-regulating	-0.59	1.5	2.6194e-09	209
			kinase 1				
493	10314	LANCL1	LanC lantibiotic synthetase component	-0.59	1.5	8.0920e-10	143
			C-like 1 (bacterial)				
494	26227	PHGDH	phosphoglycerate dehydrogenase	-0.59	1.5	8.6082e-07	639
495	3217	HOXB7	homeobox B7	-0.59	1.5	1.4603e-04	1004
496	55082	ARGLU1	arginine and glutamate rich 1	-0.59	1.5	1.1097e-06	657
497	3622	ING2	inhibitor of growth family, member 2	-0.59	1.5	7.1753e-08	445
498	5164	PDK2	pyruvate dehydrogenase kinase, isozyme 2	-0.59	1.5	1.7679e-08	336
499	2791	GNG11	guanine nucleotide binding protein (G protein), gamma 11	-0.59	1.5	2.1346e-04	1024
500	374354	NHLRC2	NHL repeat containing 2	-0.59	1.5	1.1793e-09	163
501	79633	FAT4	FAT atypical cadherin 4	-0.59	1.5	5.6056e-07	610
502	64112	MOAP1	modulator of apoptosis 1	-0.59	1.5	7.3490e-08	446
503	4776	NFATC4	nuclear factor of activated T-cells, cy-	-0.59	1.5	1.5276e-05	873
			toplasmic, calcineurin-dependent 4				
504	89944	GLB1L2	galactosidase, beta 1-like 2	-0.59	1.5	3.4536e-06	764
505	51133	KCTD3	potassium channel tetramerization do-	-0.59	1.5	1.5818e-07	517
			main containing 3				
			·				

Table 8 – continued from previous page

3.6 Estimation of the number of DE genes with a smaller sample size

Here we estimate the number of DE genes with a smaller sample size n = 20, where 10 samples correspond to FIR-affected infants and the other 10 to non-FIR affected infants, to enable the comparison of the statistical power in our data to detect DE genes with other studies with smaller sample sizes. For this purpose, we generate 100 bootstrapped data sets and perform the DE analysis on each of them.

At each bootstrap iteration we sample first uniformly at random one sample from each batch and FIR status, leading to 3 samples per group, to ensure that FIR outcome is not correlated with the batch indicator variable at the resulting bootstrapped data set. The remaining 7 samples are drawn uniformly

Figure 10. Differential expression between **FIR** and **non-FIR** samples. (a) Volcano plot. (b) Raw *p*-value distribution. The differential expression analysis was carried out using a linear model that included as main effects FIR outcome, the batch indicator variable and surrogate variables estimated by SVA.

at random with replacement among any of the n = 43 individuals.

```
> if (!file.exists(file.path(cacheDir_DE,
                              pasteO(cachePrefix_DE, "bootstrapSmall_n.RData")))) {
    sample1xbatch <- function(eset, FIR) {</pre>
      sapply(unique(eset$Batch),
        function(b, FIR) {
          idx <- which(eset$FIR == FIR & eset$Batch == b)</pre>
          if (length(idx) > 1)
            idx <- sample(idx, size=1)</pre>
          idx
        }, FIR)
    }
   nbootstrapsamples <- 100
   nbygrp <- 10
    bsamples <- lapply(1:nbootstrapsamples,</pre>
                        function(x) list(yes=sample1xbatch(frmaEset, "yes"),
                                          no=sample1xbatch(frmaEset, "no")))
    nb <- length(unique(frmaEset$Batch))</pre>
    bsamples <- lapply(bsamples,</pre>
                        function(x) list(yes=c(x$yes,
                                                sample(which(frmaEset$FIR == "yes"),
                                                       size=nbygrp-nb, replace=TRUE)),
                                          no=c(x$no,
                                                sample(which(frmaEset$FIR == "no"),
                                                       size=nbygrp-nb, replace=TRUE))))
    stopifnot(all(frmaEset$FIR[as.vector(sapply(bsamples, function(x) x$yes))] == "yes")) ## QC
    stopifnot(all(frmaEset$FIR[as.vector(sapply(bsamples, function(x) x$no))] == "no")) ## QC
    res <- bplapply(bsamples,</pre>
             function(bs) {
```

```
## select bootstrapped samples
beset <- frmaEset[, c(bs$yes, bs$no)]</pre>
tab <- table(beset$FIR)</pre>
stopifnot(all(tab == nbygrp)) ## QC
tab <- table(data.frame(FIR=beset$FIR, Batch=beset$Batch))</pre>
stopifnot(all(tab > 0)) ## QC
## select probesets passing functional non-specific filters
beset <- beset[featureNames(beset) %in% filteredProbesets, ]</pre>
featureNames(beset) <- featureNames(frmaEsetFilt)</pre>
## estimate SVs
IQRs <- esApply(beset, 1, IQR)</pre>
mod <- model.matrix(~ factor(beset$FIR) + factor(beset$Batch))</pre>
mod0 <- model.matrix(~ factor(beset$Batch))</pre>
besetSV <- sva(dat=exprs(beset[IQRs > quantile(IQRs, prob=0.9), ]),
                mod=mod, mod0=mod0)
## calculate IQR over gene expression after cleaning batch
## and surrogate variable effects
besetCleanExps <- removeBatchEffect(exprs(beset), batch=beset$Batch,</pre>
                                       covariates=besetSV$sv,
                                       design=model.matrix(~ factor(beset$FIR)))
IQRs <- apply(besetCleanExps, 1, IQR)</pre>
## calculate the fraction of genes to discard by IQR at each quantile
filteringQuantiles <- seq(0.1, 0.9, by=0.1)
filteringQuantilesIQRs <- quantile(IQRs, probs=filteringQuantiles)</pre>
genesByFilterCutoff <- sapply(filteringQuantilesIQRs,</pre>
                                function(q, IQRs) names(IQRs)[IQRs > q], IQRs)
design <- cbind(mod, besetSV$sv)</pre>
colnames(design) <- c("FIR", "FIRvsNoFIR",</pre>
                        paste0("Batch", seq_len(length(unique(beset$Batch))-1)),
                        paste0("SV", seq_len(besetSV$n)))
fit<- lmFit(beset, design)</pre>
fit<- eBayes(fit, trend=TRUE)</pre>
tt <- topTable(fit, coef="FIRvsNoFIR", number=Inf, adjust.method="fdr")</pre>
tt$ID <- rownames(tt)
DEgenesByFilterCutoff <-</pre>
  lapply(genesByFilterCutoff,
    function(genes, tt, fcCutoff, FDRcutoff) {
      tt <- tt[tt$ID %in% genes, ]</pre>
      tt$adj.P.Val <- p.adjust(tt$P.Value, method="fdr")</pre>
      tt$ID[tt$adj.P.Val <= FDRcutoff]</pre>
    }, tt, fcCutoff, FDRcutoff)
nDEgenesByFilterCutoff <- sapply(DEgenesByFilterCutoff, length)</pre>
## rev() is used here below to select highest quantile with ties
whqmaxDE <- length(nDEgenesByFilterCutoff) -</pre>
             which.max(rev(nDEgenesByFilterCutoff)) + 1
tt <- tt[tt$ID %in% genesByFilterCutoff[[whqmaxDE]], ]</pre>
tt$adj.P.Val <- p.adjust(tt$P.Value, method="fdr")</pre>
stopifnot(identical(tt$ID[tt$adj.P.Val <= FDRcutoff],</pre>
                     DEgenesByFilterCutoff[[whqmaxDE]])) ## QC
pvalues <- tt$P.Value</pre>
logfcs <- tt$logFC</pre>
```

```
names(pvalues) <- names(logfcs) <- tt$ID
list(pvalues=pvalues, logfcs=logfcs)
}, BPPARAM=MulticoreParam(workers=10))
bpvalues <- lapply(res, function(x) x$pvalues)
blogfcs <- lapply(res, function(x) x$logfcs)
save(bsamples, bpvalues, blogfcs,
file=file.path(cacheDir_DE, paste0(cachePrefix_DE, "bootstrapSmall_n.RData")))
} else
load(file.path(cacheDir_DE, paste0(cachePrefix_DE, "bootstrapSmall_n.RData")))
```

We examine the following distributions of values:

• number of genes called DE at 5% FDR obtained throughout the 100 bootstrapped data sets.

- $-\log_{10}$ raw *p*-values of all genes called DE at 5% FDR pooled from all bootstrapped data sets.
 - > bpvaluesFDR05 <- lapply(bpvalues, function(x) x[p.adjust(x, method="fdr") < 0.05])
 > summary(-log10(unlist(bpvaluesFDR05, use.names=FALSE)))

Min. 1st Qu. Median Mean 3rd Qu. Max. 1.426 2.166 2.872 3.205 3.884 15.240

• |log₂ fold-change| of all genes called DE at 5% FDR pooled from all bootstrapped data sets.

In comparison with the corresponding values from the analysis of the entire data set with n = 43:

• number of genes called DE at 5% FDR.

```
> sum(ttAllIQRfilt$adj.P.Val < 0.05)
[1] 5461</pre>
```

• $-\log_{10}$ raw *p*-values of genes called DE at 5% FDR.

```
> summary(-log10(ttAllIQRfilt$P.Value[ttAllIQRfilt$adj.P.Val < 0.05]))</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.646 2.353 3.429 4.010 5.107 15.820
```

• $|\log_2$ fold-change| of genes called DE at 5% FDR.

```
> summary(2^abs(ttAllIQRfilt$logFC[ttAllIQRfilt$adj.P.Val < 0.05]))
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.089 1.193 1.278 1.427 1.441 32.700</pre>
```


Figure 11. Comparison of the amount of DE between FIR and non-FIR affected infants, obtained from bootstrapped data sets of n = 10 individuals per FIR status group, with respect to the original data with n = 20155 individuals. (a) Distribution of the number of DE genes. (b) Distribution of raw *p*-values in \log_{10} scale. (c) Distribution of fold-changes in \log_2 scale. In (a) and (b) diamonds indicate mean values.

3.7 Comparison between FIRS and FIR signature

Here we compare our results to the signature of 541 DE genes between FIRS-affected and non-FIRS-affected infants, reported in (9). We start importing the data contained in an excel file kindly sent to us by Sally Madsen-Bouterse.

```
> library(xlsx)
> fname <- file.path("annotData", "Madsen-BouterseRomeroDraghici10_FIRSdeGenes.xls")</pre>
 cache(FIRSdeGenesTable <- read.xlsx(fname, sheetName="Gene List", stringsAsFactors=FALSE),</pre>
        dir=cacheDir_DE, prefix=cachePrefix_DE)
> dim(FIRSdeGenesTable)
[1] 548
          8
> head(FIRSdeGenesTable)
                 Transcript
         Target
                              Accession
                                          Symbol
                                                       ProbeID
                                                                     P.Value
  GI_9966888-S
                 GI_9966888 NM_020406.1
                                            PRV1
                                                  GI_9966888-S 0.0002705998
1
2 GI_34222165-S GI_34222165 NM_144637.2 ZDHHC19 GI_34222165-S 0.0002705998
3
  GI_4504394-S GI_4504394 NM_002115.1
                                             HK3 GI_4504394-S 0.0002705998
4 GI_32895360-A GI_32895360 NM_181879.1
                                            LIR9 GI_32895360-A 0.0002705998
5 GI_32481214-S GI_32481214 NM_001770.3
                                            CD19 GI_32481214-S 0.0002705998
  GI_4757873-S GI_4757873 NM_004334.1
                                            BST1 GI_4757873-S 0.0002705998
6
 Fold.change in.FIRS
1
     8.417706
                    1
2
     8.083178
                    1
3
     2.924218
                    1
4
     2.630003
                    1
5
     2.152937
                    -1
6
     1.864776
                    1
>
 tail(FIRSdeGenesTable)
           Target Transcript
                                 Accession
                                            Symbol
                                                         ProbeID
                                                                     P.Value
543 GI_4557830-S GI_4557830 NM_000281.1
                                              PCBD
                                                   GI_4557830-S 0.04908011
544 GI_28416948-S GI_28416948 NM_018384.2
                                            IAN4L1 GI_28416948-S 0.04919319
545 GI_18426910-S GI_18426910 NM_080792.1
                                            PTPNS1 GI_18426910-S 0.04925700
546 GI_22165423-A GI_22165423 NM_007234.3
                                             DCTN3 GI_22165423-A 0.04925700
547 GI_7661537-S GI_7661537 NM_015379.1
                                              BRI3 GI_7661537-S 0.04927371
```

```
548 GI_7705778-S GI_7705778 NM_016013.1 NDUFAF1 GI_7705778-S 0.04927371
   Fold.change in.FIRS
543
    1.216383
                    1
544
      1.774117
                    -1
545
      1.744894
                     1
      1.209690
546
                     1
547
      1.578615
                     1
548
      1.220065
                     1
```

This table contains 548 rows corresponding to targets in the Illumina microarray platform, which in the publication (9) represented 541 DE genes. To enable a comparison with our list of DE genes in FIR we are going to map these targets to Entrez Gene Identifiers using first the RefSeq identifier in the Accession column.

We are going to try to map the 50 targets for which their corresponding RefSeq identifiers did not match an Entrez gene using the reported gene symbol.

So, finally we have 39 illumina targets for which no Entrez gene identifier has been found. On the other hand we have 7 duplicated Entrez gene identifiers. To discard duplicates, we will keep those targets with largest absolute fold-change.

```
> FIRSdeGenesTable <- FIRSdeGenesTable[-setdiff(whdups, fcxeg), ]
> dim(FIRSdeGenesTable)
[1] 541 9
> stopifnot(!any(!is.na(FIRSdeGenesTable$ENTREZID) & duplicated(FIRSdeGenesTable$ENTREZID))) ## (
> sum(is.na(FIRSdeGenesTable$ENTREZID))
[1] 39
> FIRSdeGenes <- FIRSdeGenesTable$ENTREZID[!is.na(FIRSdeGenesTable$ENTREZID)]
> length(FIRSdeGenes)
[1] 502
> save(FIRSdeGenesTable, file=file.path(cacheDir_DE, paste0(cachePrefix_DE, "FIRSdeGenesTableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestableEntrestable
```

Therefore, from the initial list of targets reported as DE in FIRS (9) we have been able to map 502 of them to current Entrez Gene identifiers, which we will use for comparison with our results. We start this comparison by first assessing the overlap between this list of FIRS DE genes and our results at different levels:

```
> N <- nrow(ttAll)
> m <- length(intersect(FIRSdeGenes, ttAll$ID))</pre>
> n <- sum(ttAllIQRfilt$adj.P.Val < FDRcutoff)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < FDRcutoff], FIRSdeGenes))</pre>
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(FIRS=c("in", "out"), FIR=c("yes", "no")))
> t
     FIR
FIRS
       yes
              no
      185
             298
  in
  out 3711 15961
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 2.270508
               Inf
sample estimates:
odds ratio
  2.670074
> n <- length(DEgenes)</pre>
> k <- length(intersect(DEgenes, FIRSdeGenes))</pre>
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(FIRS=c("in", "out"), FIR=c("yes", "no")))
> t
     FIR
FIRS
       yes
              no
        79
             404
  in
  out 1018 18654
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
```

2.874193 Inf sample estimates: odds ratio 3.582724

There is a significant overlap between FIR and FIRS DE genes either when FIR genes are called DE at FDR <1% only or when the are also further restricted to those with a minimum 1.5-fold change. Among the overlapping genes between FIR and FIRS we are going to compare their fold changes.

```
> FIRSupdownregulation <- FIRSdeGenesTable[!is.na(FIRSdeGenesTable$ENTREZID), "in.FIRS"]
> tabFIRS <- table(FIRSupdownregulation) / length(FIRSupdownregulation)</pre>
> tabFIRS
FIRSupdownregulation
      -1
                1
0.438247 0.561753
> FIRSlfc <- FIRSupdownregulation *</pre>
               log2(FIRSdeGenesTable[!is.na(FIRSdeGenesTable$ENTREZID), "Fold.change"])
> names(FIRS1fc) <- FIRSdeGenesTable$ENTREZID[!is.na(FIRSdeGenesTable$ENTREZID)]</pre>
> tabFIRfdr05 <- table(sign(ttAllIQRfilt$logFC[ttAllIQRfilt$adj.P.Val < 0.05])) /</pre>
                 sum(ttAllIQRfilt$adj.P.Val < 0.05)</pre>
> tabFIRfdr05
       -1
                   1
0.6062992 0.3937008
> tabFIRfdr01 <- table(sign(ttAllIQRfilt$logFC[ttAllIQRfilt$adj.P.Val < 0.01])) /</pre>
                  sum(ttAllIQRfilt$adj.P.Val < 0.01)</pre>
> tabFIRfdr01
       -1
                  1
0.6203799 0.3796201
> tabFIRfdr01fc1.5 <- table(sign(ttDEgenes$logFC)) / nrow(ttDEgenes)</pre>
> tabFIRfdr01fc1.5
       -1
                   1
0.4603464 0.5396536
> FIRlfc <- ttAll$logFC
> names(FIRlfc) <- ttAll$ID</pre>
> commonGenes <- intersect(names(FIRSlfc), names(FIRlfc))</pre>
> length(commonGenes)
[1] 483
> cor.test(FIRSlfc[commonGenes], FIRlfc[commonGenes])
        Pearson's product-moment correlation
data: FIRSlfc[commonGenes] and FIRlfc[commonGenes]
t = 9.9646, df = 481, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3368635 0.4849756
sample estimates:
      cor
0.4136527
> commonGenesFDR05 <- intersect(commonGenes, ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < 0.05])</p>
> cor.test(FIRSlfc[commonGenesFDR05], FIRlfc[commonGenesFDR05])
        Pearson's product-moment correlation
data: FIRSlfc[commonGenesFDR05] and FIRlfc[commonGenesFDR05]
t = 8.6219, df = 224, p-value = 1.332e-15
```

```
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3943597 0.5911617
sample estimates:
      cor
0.4991707
> commonGenesFDR01 <- intersect(commonGenes, ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < 0.01])</p>
> cor.test(FIRSlfc[commonGenesFDR01], FIRlfc[commonGenesFDR01])
        Pearson's product-moment correlation
data: FIRSlfc[commonGenesFDR01] and FIRlfc[commonGenesFDR01]
t = 8.1245, df = 183, p-value = 6.484e-14
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.4003305 0.6135575
sample estimates:
      cor
0.5148631
> commonGenesFDR01FC1.5 <- intersect(commonGenes, DEgenes)</pre>
> cor.test(FIRSlfc[commonGenesFDR01FC1.5], FIRlfc[commonGenesFDR01FC1.5])
        Pearson's product-moment correlation
data: FIRSlfc[commonGenesFDR01FC1.5] and FIRlfc[commonGenesFDR01FC1.5]
t = 3.7717, df = 77, p-value = 0.0003164
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1904058 0.5665347
sample estimates:
     cor
0.394891
```

There are 483 genes among the 20155 that have been tested for DE in the filtered FIR data set, that form part of the 502 in the FIRS gene signature with mapped Entrez Gene identifiers. While the proportions of up and down regulated genes in the FIR data are very different from the ones in the FIRS signature for genes called DE at FDR<5% and FDR<1%, they become very similar for genes called DE at FDR<1% with a minimum 1.5-fold change.

In Figure 13 we can see the comparison of the \log_2 -fold changes between both data sets. While there are many sources of potential different biases between the two data sets, such as, RNA source material (cord tissue vs. cord blood), sample-preparation protocols or microarray technology (Affymetrix vs. Illumina), there is a positive correlation between the \log_2 -fold changes of genes called DE with FDR<5%.

3.8 Differential expression analysis in severe FIR

The association of intraventricular hemorraghe (IVH) and white matter disease (WMD) with stronger inflammation allows one to define a surrogate of severe FIR as those FIR-affected infants that also develop IVH and WMD. We search here for a molecular signature of severe FIR by comparing infants affected by all three factors (FIR, IVH and WMD) vs. those who did not have any of them. In Table 9 we can see the number of infants cross-classified by FIR, IVH and WMD status.

Due to the limited available sample size and the loss of statistical power that follows considering 3-way interaction effects we are not going to include the batch indicator variable in the model, letting surrogate variables estimated by SVA to adjust for that effect.

```
> library(Hmisc) ## for generating n-way x-tables
> eset <- frmaEsetFilt
> eset$FIR <- factor(eset$FIR)
> eset$Ivh <- factor(eset$Ivh)</pre>
```


Figure 12. Comparison of the proportion of up and downregulated genes called DE in FIR and FIRS. The y-axis shows the proportion of genes called DE. (a) Proportions for the study of FIRS (9). (b) Proportions for the study of FIR described in this document.

IVH	WMD	FIR	no	yes
no	no		22	10
	yes		0	1
yes	no		1	3
	yes		2	4

Table 9. Infants cross-classified by FIR, IVH and WMD status.

```
> eset$Wmd <- factor(eset$Wmd)</pre>
> df <- data.frame(FIR=eset$FIR, IVH=eset$Ivh, WMD=eset$Wmd)
> xtabFIRIVHWMD <- ftable(FIR ~ IVH + WMD, data=df)</pre>
> xtabFIRIVHWMD
        FIR no yes
IVH WMD
no no
             22
                 10
              0
                  1
    yes
                  3
              1
yes no
                  4
              2
    yes
```

The pipeline for detecting DE genes is the same we use before. We run it here all at once. In this case, we build our linear model by forming a new variable specifying all 3-way combinations of factors FIR, IVH and WMD status, which become the effects employed to predict the expression level of each gene. Then we use the corresponding estimated coefficients to interrogate our contrast of interest, which involves the comparison of n=4 infants affected by FIR, IVH and WMD against n=22 infants not affected by any of these phenotypes.

Figure 13. Comparison of fold-changes between genes differentially expressed in FIR and FIRS. In the *y*-axis the FIR fold changes as function of the FIRS fold-changes in the *x*-axis, both in \log_2 scale. Tick marks show \log_2 -fold change values for all genes called differentially expressed at FDR<5%, while dots display only genes matching between FIRS and FIR data sets. Regression lines are calculated from the dots with corresponding colors.

Our contrast of interest here is infants affected by all, FIR, IVH and WMD against infants without any of these phenotypes.
```
tt$adj.P.Val <- p.adjust(tt$P.Value, method="fdr")</pre>
                                     tt$ID[tt$adj.P.Val <= FDRcutoff]</pre>
                                   }, ttAllIVHWMD, FDRcutoff)
> nDEgenesByFilterCutoff <- sapply(DEgenesByFilterCutoff, length)</pre>
> nDEgenesByFilterCutoff
10% 20% 30% 40% 50% 60% 70% 80% 90%
21 21 27 51 58 75 106 131 183
> whqmaxDE <- length(nDEgenesByFilterCutoff) - which.max(rev(nDEgenesByFilterCutoff)) + 1</pre>
> ttAllIQRfiltIVHWMD <- ttAllIVHWMD[ttAllIVHWMD$ID %in% genesByFilterCutoff[[whqmaxDE]], ]
> ttAllIQRfiltIVHWMD$adj.P.Val <- p.adjust(ttAllIQRfiltIVHWMD$P.Value, method="fdr")
> dim(ttAllIQRfiltIVHWMD)
[1] 2016
            8
> stopifnot(identical(ttAllIQRfiltIVHWMD$ID[ttAllIQRfiltIVHWMD$adj.P.Val <= FDRcutoff],</pre>
                      DEgenesByFilterCutoff[[whqmaxDE]])) ## QC
> ttDEgenesIVHWMD <- ttAllIQRfiltIVHWMD[abs(ttAllIQRfiltIVHWMD$logFC) > log2(fcCutoff) &
                                         ttAllIQRfiltIVHWMD$adj.P.Val <= FDRcutoff, ]</pre>
> dim(ttDEgenesIVHWMD)
[1] 151
> DEgenesIVHWMD <- ttDEgenesIVHWMD$ID
> length(DEgenesIVHWMD)
[1] 151
> stopifnot(DEgenesIVHWMD == ttDEgenesIVHWMD$ID) ## QC
> save(DEgenesIVHWMD, ttDEgenesIVHWMD, ttAllIVHWMD, ttAllIQRfiltIVHWMD, cleanEsetIVHWMD,
       file=file.path(cacheDir_DE, "DEgenesIVHWMD.RData"))
```

There are 151 DE genes at FDR < 0.01 and with a minimum 1.5-fold change, between FIR-IVH-WMD affected and non-affected infants. In Table 10 we have the list of these genes ordered by raw p-value.

Table 10. List of 151 differentially expressed (DE) genes called with FDR <1% and minimum 1.5-fold change between FIR/IVH/WMD and nonFIR/nonIVH/nonWMD affected infants. Genes are ordered by the raw p-value of the change in expression level. Columns "LFC" and "FC" contain the fold-changes in log_2 and absolute scales, respectively. Columns "FIW1" and "FIW2" indicate whether the gene is only called DE in this FIR/IVH/WMD comparison but not between FIR and nonFIR infants at FDR <1% with minimum 1.5-fold change ("FIW1") or at FDR <1% only ("FIW2").

	Entrez ID	Symbol	Full name	LFC	FC	P value	FIW1	FIW
1	6347	CCL2	chemokine (C-C motif) ligand 2	3.06	8.3	9.4459e-08	No	No
2	123207	C15orf40	chromosome 15 open reading frame 40	-0.99	2.0	1.7803e-07	No	No
3	8554	PIAS1	protein inhibitor of activated STAT, 1	-0.63	1.5	6.9078e-07	Yes	No
4	7128	TNFAIP3	tumor necrosis factor, alpha-induced	2.00	4.0	8.6458e-07	No	No
			protein 3					
5	6280	S100A9	S100 calcium binding protein A9	2.80	7.0	1.6612e-06	No	No
6	2919	CXCL1	chemokine (C-X-C motif) ligand 1	3.00	8.0	1.7486e-06	No	No
			(melanoma growth stimulating activity,					
			alpha)					
7	7357	UGCG	UDP-glucose ceramide glucosyltrans-	1.12	2.2	2.0843e-06	No	No
			ferase					
8	477	ATP1A2	ATPase, $Na+/K+$ transporting, alpha	-1.59	3.0	2.9288e-06	No	No
			2 polypeptide					
9	79974	CPED1	cadherin-like and PC-esterase domain	-0.92	1.9	4.1895e-06	No	No
			containing 1					
10	2018	EMX2	empty spiracles homeobox 2	-0.84	1.8	4.3255e-06	No	No

			Table 10 continued noin previous page					
11	64332	NFKBIZ	nuclear factor of kappa light polypep-	1.51	2.9	5.3868e-06	No	No
			tide gene enhancer in B-cells inhibitor,					
10	0770	CINIA 11	zeta	0.70	1.7	0 1070 00	NT	
12	2770	GNAII	guanine nucleotide binding protein	-0.79	1.7	6.5272e-06	No	NO
			(G protein), alpha inhibiting activity					
13	657	BMPB1A	bone morphogenetic protein receptor	-0.77	17	6.8938e-06	No	No
10	001	Divit Itill	type IA	0.11	1.1	0.055000-00	110	
14	3275	PRMT2	protein arginine methyltransferase 2	-0.72	1.6	8.3422e-06	No	No
15	324	APC	adenomatous polyposis coli	-0.87	1.8	8.6254e-06	No	No
16	5906	RAP1A	RAP1A, member of RAS oncogene fam-	-0.82	1.8	8.9998e-06	No	No
			ily					
17	9945	GFPT2	glutamine-fructose-6-phosphate	1.33	2.5	9.8683e-06	No	No
			transaminase 2					
18	5784	PTPN14	protein tyrosine phosphatase, non-	-1.61	3.1	1.0855e-05	No	No
			receptor type 14					
19	113612	CYP2U1	cytochrome P450, family 2, subfamily	-0.74	1.7	1.1467e-05	No	No
		~~~~~	U, polypeptide 1					
20	4093	SMAD9	SMAD family member 9	-0.98	2.0	1.5690e-05	No	No
21	54898	ELOVL2	ELOVL fatty acid elongase 2	1.27	2.4	1.5841e-05	No	No
22	1070	CETN3	centrin, EF-hand protein, 3	-0.79	1.7	1.7668e-05	Yes	No
23	23493	HEY2	hes-related family bHLH transcription	-0.71	1.6	1.8304e-05	No	No
24	10125	NAMDT	nactor with YRPW motil 2	9.16	4.5	1 97240 05	No	No
24	10155	NAMP I	foraso	2.10	4.5	1.8734e-05	INO	
25	8404	SPARCL1	SPARC-like 1 (hevin)	_1.09	21	1 9002e-05	No	No
$\frac{20}{26}$	5727	PTCH1	patched 1	-0.87	$\frac{2.1}{1.8}$	2.1214e-05	No	No
20	23516	SLC39A14	solute carrier family 39 (zinc trans-	1.02	$\frac{1.0}{2.0}$	2.1211e 00 2.3224e-05	No	No
	20010	Sheepinii	porter), member 14	1.02		2.02210 00	110	110
28	2258	FGF13	fibroblast growth factor 13	-0.74	1.7	2.5970e-05	No	No
29	7076	TIMP1	TIMP metallopeptidase inhibitor 1	1.04	2.1	2.8585e-05	No	No
30	10217	CTDSPL	CTD (carboxy-terminal domain, RNA	-0.70	1.6	2.9753e-05	No	No
			polymerase II, polypeptide A) small					
			phosphatase-like					
31	3718	JAK3	Janus kinase 3	0.93	1.9	3.0193e-05	No	No
32	1272	CNTN1	contactin 1	-1.48	2.8	3.0222e-05	No	No
33	602	BCL3	B-cell CLL/lymphoma 3	0.88	1.8	3.2521e-05	No	No
34	83468	GLT8D2	glycosyltransferase 8 domain containing	-1.07	2.1	3.2659e-05	No	No
			2	0.00			3.7	
35	4594	MUT	methylmalonyl CoA mutase	-0.62	1.5	3.4705e-05	No	No
30	58155	PTBP2	polypyrimidine tract binding protein 2	-0.83	1.8	3.4931e-05	No N-	No No
31	1287	COL4A5	collagen, type IV, alpha 5	-0.71	1.0	3.4988e-05	No No	No No
38	8801	SUCLG2	succinate-CoA ligase, GDP-forming,	-0.89	1.9	3.5748e-05	INO	
20	4651	MVO10	myosin X	0.77	17	3 69510 05	No	No
40	620	CFR	complement factor B	9.11	<u> </u>	3.76160-05	No	No
40	119504	ANAPC16	anaphase promoting complex subunit	-0.76	17	3.8764e-05	No	No
11	110004		16	-0.10	1.1	5.01040-00	110	
42	5806	PTX3	pentraxin 3, long	3.16	8.9	3.8950e-05	No	No
43	133746	JMY	junction mediating and regulatory pro-	-0.91	1.9	4.0290e-05	No	No
			tein, p53 cofactor	-				

Table 10 – continued from previous page

			Table 10 – continued from previous page					
44	5156	PDGFRA	platelet-derived growth factor receptor,	1.40	2.6	4.5793e-05	No	No
45	<u> </u>	G100 A 0	alpha polypeptide	0.50	11.0	4 7097 05	NT	NT
45	6279	SIU0A8	S100 calcium binding protein A8	3.53	11.0	4.7037e-05	No	NO
46	1890	TYMP DAD11DD2	thymidine phosphorylase	0.89	1.9	5.3684e-05	No	No
47	22841	RAB11F1P2	(class I) (class I)	-0.60	1.5	6.0239e-05	No	No
48	8630	HSD17B6	hydroxysteroid (17-beta) dehydroge- nase 6	-1.01	2.0	6.0597e-05	No	No
49	6286	S100P	S100 calcium binding protein P	1 63	3.1	6 1304e-05	No	No
50	5352	PLOD2	procollagen-lysine 2-oxoglutarate 5-	1.00	2.0	6.8805e-05	No	No
00	0001	12022	dioxygenase 2	1.01		0.00000 00	110	1.0
51	284309	ZNF776	zinc finger protein 776	-0.83	1.8	7.0245e-05	Yes	No
52	6648	SOD2	superoxide dismutase 2. mitochondrial	2.17	4.5	7.2837e-05	No	No
53	196513	DCP1B	decapping mRNA 1B	-0.75	1.7	7.3195e-05	Yes	No
54	7187	TRAF3	TNF receptor-associated factor 3	0.73	1.7	7.3394e-05	No	No
55	151742	PPM1L	protein phosphatase. $Mg2+/Mn2+$ de-	-1.02	2.0	7.6146e-05	No	No
00	101112	111111	pendent, 1L	1.0-			110	1.0
56	5348	FXYD1	FXYD domain containing ion transport regulator 1	-0.73	1.7	8.5423e-05	No	No
57	6283	S100A12	S100 calcium binding protein A12	2.48	5.6	8 7003e-05	No	No
58	360023	ZBTB41	zinc finger and BTB domain containing	-0.66	1.6	8.9401e-05	Ves	No
00	000020		41	0.00	1.0	0.01010 00	105	
59	57531	HACE1	HECT domain and ankyrin repeat con-	-0.72	1.6	9.0199e-05	No	No
	0.00-		taining E3 ubiquitin protein ligase 1			0.02000.00		
60	590	BCHE	butyrylcholinesterase	-1.20	2.3	9.2066e-05	No	No
61	79611	ACSS3	acyl-CoA synthetase short-chain family	-0.84	1.8	1.0074e-04	No	No
01	10011	110000	member 3	0.01	1.0	1.001 10 01	110	
62	29761	USP25	ubiquitin specific peptidase 25	-0.89	1.8	1.0646e-04	No	No
63	83706	FERMT3	fermitin family member 3	0.83	1.8	1.0946e-04	No	No
64	139341	FUNDC1	FUN14 domain containing 1	-0.66	1.6	1.0975e-04	Yes	No
65	7850	IL1R2	interleukin 1 receptor, type II	1.89	3.7	1.1660e-04	No	No
66	79148	MMP28	matrix metallopeptidase 28	-0.91	1.9	1.2163e-04	No	No
67	9910	RABGAP1L	RAB GTPase activating protein 1-like	-0.67	1.6	1.2445e-04	No	No
68	59353	TMEM35	transmembrane protein 35	-1.38	2.6	1.3871e-04	No	No
69	7378	UPP1	uridine phosphorylase 1	1.02	2.0	1.3942e-04	No	No
70	2549	GAB1	GRB2-associated binding protein 1	-0.88	1.8	1.4246e-04	No	No
71	57631	LRCH2	leucine-rich repeats and calponin ho-	-0.97	2.0	1.4835e-04	No	No
			mology (CH) domain containing 2					
72	112770	C1orf85	chromosome 1 open reading frame 85	-0.94	1.9	1.5003e-04	No	No
73	395	ARHGAP6	Rho GTPase activating protein 6	-0.95	1.9	1.5670e-04	No	No
74	29915	HCFC2	host cell factor C2	-0.61	1.5	1.6281e-04	Yes	No
75	29904	EEF2K	eukaryotic elongation factor-2 kinase	-0.66	1.6	1.6790e-04	No	No
76	8436	SDPR	serum deprivation response	-0.87	1.8	1.7912e-04	No	No
77	8082	SSPN	sarcospan	-1.19	2.3	1.9177e-04	No	No
78	79739	TTLL7	tubulin tyrosine ligase-like family.	-0.87	1.8	1.9830e-04	No	No
70	100005		member 7	1.15	0.0	0.1510.04	NT	NT
79	139065	SLITRK4	SLIT and NTRK-like family, member 4	-1.15	2.2	2.1513e-04	No	No
80	1825	DSC3	desmocollin 3	-0.93	1.9	2.2564e-04	No	No
81	5087	PBX1	pre-B-cell leukemia homeobox 1	-0.77	1.7	2.2653e-04	No	No
82	55784	MCTP2	multiple C2 domains, transmembrane 2	1.02	2.0	2.3089e-04	No	No
83	23514	SPIDR	scattolding protein involved in DNA re-	0.98	2.0	2.4770e-04	No	No
1		1	pair	1				1

			Table to continued nom previous page					
84	56952	PRTFDC1	phosphoribosyl transferase domain con- taining 1	-0.96	1.9	2.5723e-04	No	No
85	6581	SLC22A3	solute carrier family 22 (organic cation transporter), member 3	0.91	1.9	2.5852e-04	No	No
86	27109	ATP5S	ATP synthase, H+ transporting, mito- chondrial Fo complex, subunit s (factor B)	-0.93	1.9	2.6324e-04	No	No
87	130507	UBR3	ubiquitin protein ligase E3 component n-recognin 3 (putative)	-0.62	1.5	2.6489e-04	No	No
88	3033	HADH	hydroxyacyl-CoA dehydrogenase	-0.73	1.7	2.6544e-04	No	No
89	7341	SUMO1	small ubiquitin-like modifier 1	-0.71	1.6	2.7382e-04	No	No
90	54741	LEPROT	leptin receptor overlapping transcript	-0.77	1.7	2.7876e-04	No	No
91	5464	PPA1	pyrophosphatase (inorganic) 1	0.60	1.5	2.9179e-04	No	No
92	7127	TNFAIP2	tumor necrosis factor, alpha-induced protein 2	1.67	3.2	2.9852e-04	No	No
93	4792	NFKBIA	nuclear factor of kappa light polypep- tide gene enhancer in B-cells inhibitor, alpha	0.86	1.8	3.1247e-04	No	No
94	55857	KIZ	kizuna centrosomal protein	-0.83	1.8	3.3092e-04	No	No
95	10426	TUBGCP3	tubulin, gamma complex associated protein 3	-0.63	1.5	3.3205e-04	No	No
96	10370	CITED2	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	-1.05	2.1	3.3484e-04	No	No
97	54749	EPDR1	ependymin related 1	-0.67	1.6	3.3538e-04	No	No
98	7130	TNFAIP6	tumor necrosis factor, alpha-induced protein 6	1.80	3.5	3.3742e-04	No	No
99	5329	PLAUR	plasminogen activator, urokinase recep- tor	0.86	1.8	3.4793e-04	No	No
100	56999	ADAMTS9	ADAM metallopeptidase with throm- bospondin type 1 motif, 9	0.96	1.9	3.5479e-04	No	No
101	2036	EPB41L1	erythrocyte membrane protein band 4.1-like 1	-0.75	1.7	3.7892e-04	No	No
102	93134	ZNF561	zinc finger protein 561	-0.63	1.5	3.8110e-04	No	No
103	53354	PANK1	pantothenate kinase 1	-0.72	1.6	3.9414e-04	No	No
104	4199	ME1	malic enzyme 1, NADP(+)-dependent, cytosolic	-0.87	1.8	3.9600e-04	No	No
105	123283	TARSL2	threonyl-tRNA synthetase-like 2	-0.63	1.5	4.0123e-04	Yes	No
106	3148	HMGB2	high mobility group box 2	-0.59	1.5	4.1811e-04	Yes	No
107	51449	PCYOX1	prenylcysteine oxidase 1	-0.74	1.7	4.2812e-04	No	No
108	5069	PAPPA	pregnancy-associated plasma protein A, pappalysin 1	1.40	2.6	4.2933e-04	No	No
109	3709	ITPR2	inositol 1,4,5-trisphosphate receptor, type 2	0.66	1.6	4.4381e-04	No	No
110	64780	MICAL1	microtubule associated monooxy- genase, calponin and LIM domain containing 1	-0.76	1.7	4.5005e-04	No	No
111	91526	ANKRD44	ankyrin repeat domain 44	-0.73	1.7	4.6253e-04	Yes	No
112	10672	GNA13	guanine nucleotide binding protein (G protein), alpha 13	-0.69	1.6	4.6613e-04	Yes	No
113	19	ABCA1	ATP-binding cassette, sub-family A (ABC1), member 1	0.95	1.9	4.7447e-04	No	No

Table 10 – continued from previous page

			Table 10 – continued from previous page					
114	151525	WDSUB1	WD repeat, sterile alpha motif and U-	-0.77	1.7	4.8723e-04	No	No
115	8988	HSPB3	heat shock 27kDa protein 3	-1 16	22	5.0035e-04	No	No
116	715	C1R	complement component 1 r subcompo-	1.10	2.2	5.0631e-04	No	No
110	110	OIII	nent	1.02	2.0	0.00010 01	110	
117	6374	CXCL5	chemokine (C-X-C motif) ligand 5	2 49	5.6	5 3036e-04	No	No
118	63932	CXorf56	chromosome X open reading frame 56	-0.86	1.8	5.3192e-04	Yes	No
119	23236	PLCB1	phospholipase C. beta 1	-0.84	1.8	5.4204e-04	No	No
110	20200	12021	(phosphoinositide-specific)	0.01	1.0	0.12010.01	110	1.0
120	199675	MCEMP1	mast cell-expressed membrane protein	1.18	2.3	5.4607e-04	No	No
_		_	1		_		-	
121	4116	MAGOH	mago-nashi homolog, proliferation-	-0.61	1.5	5.5957e-04	Yes	No
			associated (Drosophila)					
122	51133	KCTD3	potassium channel tetramerization do-	-0.59	1.5	5.9787e-04	No	No
			main containing 3					
123	29951	PDZRN4	PDZ domain containing ring finger 4	-1.23	2.3	6.1013e-04	No	No
124	121227	LRIG3	leucine-rich repeats and	-0.84	1.8	6.1407e-04	No	No
			immunoglobulin-like domains 3					
125	1027	CDKN1B	cyclin-dependent kinase inhibitor 1B	-0.61	1.5	6.3076e-04	Yes	No
			(p27, Kip1)					
126	84253	GARNL3	GTPase activating Rap/RanGAP	-0.72	1.6	6.4385e-04	No	No
			domain-like 3					
127	284	ANGPT1	angiopoietin 1	-0.90	1.9	6.5218e-04	No	No
128	56890	MDM1	Mdm1 nuclear protein homolog	-0.62	1.5	6.6445e-04	No	No
			(mouse)					
129	57649	PHF12	PHD finger protein 12	-0.66	1.6	6.7611e-04	Yes	No
130	79772	MCTP1	multiple C2 domains, transmembrane 1	1.20	2.3	6.9151e-04	No	No
131	6419	SETMAR	SET domain and mariner transposase	-0.61	1.5	7.2037e-04	No	No
100	00070	DDVO9	tusion gene	0.50	1 5	7.0501 04	N	NT
132	26273	FBX03	F-box protein 3	-0.59	1.5	7.2561e-04	NO	NO
133	4790	NFKBI	tide gene enhancer in B-cells 1	0.74	1.7	7.2581e-04	No	No
134	5337	PLD1	phospholipase D1, phosphatidylcholine-	1.16	2.2	7.7581e-04	No	No
			specific					
135	57456	KIAA1143	KIAA1143	-0.59	1.5	7.7668e-04	No	No
136	4209	MEF2D	myocyte enhancer factor 2D	-0.60	1.5	7.8511e-04	Yes	No
137	4794	NFKBIE	nuclear factor of kappa light polypep-	0.61	1.5	7.8863e-04	No	No
			tide gene enhancer in B-cells inhibitor,					
			epsilon					
138	23171	GPD1L	glycerol-3-phosphate dehydrogenase 1-	-0.98	2.0	8.0037e-04	No	No
100	00010	<b>DDD</b> 1	like	0.50	1 8	0.0005 04	). ).	D.T.
139	80312	TETT	tet methylcytosine dioxygenase 1	-0.76	1.7	8.0665e-04	No	No
140	4675	NAPIL3	nucleosome assembly protein 1-like 3	-0.85	1.8	8.0772e-04	NO N	NO
141	4067	LYN	LYN proto-oncogene, Src family tyro-	1.32	2.5	8.1580e-04	NO	NO
149	F10F	DEV14	sine kinase	0.00	1.0	0.1607-04	N.	N.
142	<u> </u>	PEA14	peroxisomal biogenesis factor 14	-0.88	1.8	8.1087e-04	NO No	No No
143	<u></u> 55220	DPAM1	DNA damago regulated autophage	1.49	2.8	0.2014e-04 8 3205c 04	INO No	NO No
144	00002	DRAMI	modulator 1	0.92	1.9	0.02000-04		
1/5	55607		noullator i protein phosphatase 1 regulatory sub	-0.03	10	8 30000 04	No	No
140	00007	11111109A	unit 9A	-0.95	1.9	0.000000-04	110	
146	8175	SF3A2	splicing factor 3a subunit 2 66kDa	-0.59	15	8 4441e-04	No	No
110	0110	51 0/12	prioring ractor ou, subunit 2, tokiba		1 1.0	0.11110-04	110	1 10

11 10		<i>c</i>		
able 10 –	continued	trom	previous	pag

IVH	WMD	FIR	no	yes
no	no		10	1
	yes		0	0
yes	no		0	2
	yes		1	3

Table 11. Infants who were not ad-<br/>ministered with ACS cross-classified<br/>by FIR, IVH and WMD status.

Table	10 –	continued	from	previous	page

			1 10					
147	84553	FAXC	failed axon connections homolog	-0.76	1.7	8.5156e-04	No	No
			(Drosophila)					
148	59269	HIVEP3	human immunodeficiency virus type I	1.39	2.6	8.5261e-04	No	No
			enhancer binding protein 3					
149	26037	SIPA1L1	signal-induced proliferation-associated	-0.65	1.6	8.5268e-04	No	No
			1 like 1					
150	148203	ZNF738	zinc finger protein 738	-0.60	1.5	8.6038e-04	Yes	No
151	23336	SYNM	synemin, intermediate filament protein	-0.69	1.6	9.0153e-04	No	No

Since the administration of antenatal glucocorticoids (ACS) has been described to improve the outcome of IVH (7), we are going to repeat the analysis only on those infants who have been not administered with ACS, and described in Table 11.

```
> eset <- frmaEsetFilt</pre>
> eset$FIR <- factor(eset$FIR)</pre>
> eset$Ivh <- factor(eset$Ivh)</pre>
> eset$Wmd <- factor(eset$Wmd)</pre>
> eset <- eset[, eset$Acs == "no"]</pre>
> df <- data.frame(FIR=eset$FIR, IVH=eset$Ivh, WMD=eset$Wmd)
> xtabFIRIVHWMDnoACS <- ftable(FIR ~ IVH + WMD, data=df)</pre>
> xtabFIRIVHWMDnoACS
         FIR no yes
IVH WMD
no no
             10
                   1
    yes
              0
                   0
              0
                   2
yes no
                   3
              1
    yes
```

In this case, the differential expression analysis involves only the n=17 infants who were not administered with ACS and, more concretely, the comparison between n=3 infants affected by FIR, IVH and WMD against n=10 infants not affected by any of these phenotypes.

```
> FIRIvhWmd <- factor(paste(eset$FIR, eset$Ivh, eset$Wmd, sep="."))</pre>
```

- > mod <- model.matrix(~ 0 + FIRIvhWmd, eset)</pre>
- > colnames(mod) <- levels(FIRIvhWmd)</pre>
- > mod0 <- model.matrix(~ 1, eset)</pre>
- > IQRs <- esApply(eset, 1, IQR)
- > cache(svFIRIVHWMDnoACS <- sva(dat=exprs(eset[IQRs > quantile(IQRs, prob=0.90), ]), mod=mod, mod dir=cacheDir_DE, prefix=cachePrefix_DE)
- > cleanExps <- removeBatchEffect(exprs(eset), covariates=svFIRIVHWMDnoACS\$sv, design=mod)</pre>
- > cleanEsetIVHWMDnoACS <- eset</pre>

```
> exprs(cleanEsetIVHWMDnoACS) <- cleanExps</pre>
```

Our contrast of interest here is again infants affected by all, FIR, IVH and WMD against infants without any of these phenotypes.

```
> cont.matrix <- makeContrasts(FIRIvhWmd=yes.yes.yes-no.no.no,</pre>
                                levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)</pre>
> fit2 <- eBayes(fit2, trend=TRUE)</pre>
> ttAllIVHWMDnoACS <- topTable(fit2, coef="FIRIvhWmd", n=Inf)</pre>
> DEgenesByFilterCutoff <- lapply(genesByFilterCutoff,</pre>
                                    function(genes, tt, FDRcutoff) {
                                      tt <- tt[tt$ID %in% genes, ]</pre>
                                      tt$adj.P.Val <- p.adjust(tt$P.Value, method="fdr")</pre>
                                      tt$ID[tt$adj.P.Val <= FDRcutoff]</pre>
                                    }, ttAllIVHWMDnoACS, FDRcutoff)
> nDEgenesByFilterCutoff <- sapply(DEgenesByFilterCutoff, length)</pre>
> nDEgenesByFilterCutoff
10% 20% 30% 40% 50% 60% 70% 80% 90%
 23 36 54 59 91 152 286 498 570
> whqmaxDE <- length(nDEgenesByFilterCutoff) - which.max(rev(nDEgenesByFilterCutoff)) + 1</pre>
> ttAllIQRfiltIVHWMDnoACS <- ttAllIVHWMDnoACS[ttAllIVHWMDnoACS$ID %in% genesByFilterCutoff[[whqma
> ttAllIQRfiltIVHWMDnoACS$adj.P.Val <- p.adjust(ttAllIQRfiltIVHWMDnoACS$P.Value, method="fdr")
> dim(ttAllIQRfiltIVHWMDnoACS)
[1] 2016
            8
> stopifnot(identical(ttAllIQRfiltIVHWMDnoACS$ID[ttAllIQRfiltIVHWMDnoACS$adj.P.Val <= FDRcutoff]</pre>
                       DEgenesByFilterCutoff[[whqmaxDE]])) ## QC
> ttDEgenesIVHWMDnoACS <- ttAllIQRfiltIVHWMDnoACS[abs(ttAllIQRfiltIVHWMDnoACS$logFC) > log2(fcCu-
                                          ttAllIQRfiltIVHWMDnoACS$adj.P.Val <= FDRcutoff, ]</pre>
> dim(ttDEgenesIVHWMDnoACS)
[1] 566
          8
> DEgenesIVHWMDnoACS <- ttDEgenesIVHWMDnoACS$ID
> length(DEgenesIVHWMDnoACS)
[1] 566
> stopifnot(DEgenesIVHWMDnoACS == ttDEgenesIVHWMDnoACS$ID) ## QC
> save(DEgenesIVHWMDnoACS, ttDEgenesIVHWMDnoACS, ttAllIVHWMDnoACS,
       ttAllIQRfiltIVHWMDnoACS, cleanEsetIVHWMDnoACS,
       file=file.path(cacheDir_DE, "DEgenesIVHWMDnoACS.RData"))
```

There are 566 DE genes at FDR<0.01 and with a minimum 1.5-fold change, between FIR-IVH-WMD affected and non-affected infants, who were not administered with ACS. In Table 12 we have the list of these genes ordered by raw *p*-value. There are 256 genes in this list that are also DE between FIR and nonFIR infants, and therefore, 310 that are called DE between FIR/IVH/WMD and nonFIR/nonIVH/nonWMD infants but not between FIR and nonFIR infants. Genes in this latter subset are indicated in columns "FIW1" and "FIW2" from Table 12.

**Table 12.** List of 566 differentially expressed (DE) genes called with FDR <1% and minimum 1.5-fold change between FIR/IVH/WMD and nonFIR/nonIVH/nonWMD affected infants, who were not administered with antenatal glucocorticoids. Genes are ordered by the raw p-value of the change in expression level. Columns "LFC" and "FC" contain the fold-changes in  $\log_2$  and absolute scales, respectively. Columns "FIW1" and "FIW2" indicate whether the gene is only called DE in this FIR/IVH/WMD comparison but not between FIR and nonFIR infants at FDR <1% with minimum 1.5-fold change ("FIW1") or at FDR <1% only ("FIW2").

	Entrez ID	Symbol	Full name	LFC	FC	P value	FIW1	FI
1	1272	CNTN1	contactin 1	-2.65	6.3	3.1703e-09	No	N
2	7128	TNFAIP3	tumor necrosis factor, alpha-induced	2.28	4.9	5.6835e-08	No	N
			protein 3					
3	6283	S100A12	S100 calcium binding protein A12	4.31	19.8	7.6142e-08	No	N
4	6279	S100A8	S100 calcium binding protein A8	6.27	77.1	2.9034e-07	No	N
5	6280	S100A9	S100 calcium binding protein A9	3.95	15.5	3.2978e-07	No	N
6	139886	SPIN4	spindlin family, member 4	-1.34	2.5	6.4689e-07	No	N
7	83706	FERMT3	fermitin family member 3	1.34	2.5	1.5583e-06	No	N
8	2919	CXCL1	chemokine (C-X-C motif) ligand 1	3.11	8.6	1.5822e-06	No	N
			(melanoma growth stimulating activity,					
			alpha)	1.10		0.0510.00		
9	9737	GPRASPI	G protein-coupled receptor associated	-1.40	2.6	2.6548e-06	No	N
10	5000	D 4 D1 4	sorting protein 1	1.40	0.0	0.0051 00		
10	5906	KAPIA	RAPIA, member of RAS oncogene fam-	-1.49	2.8	2.8351e-06	INO	N
11	477	ATD1 A 9	$\frac{11y}{ATDaga} = Na + /V + transporting alpha$	2.05	4.1	2.0225 06	No	N
11	477	AIPIAZ	Al Pase, $Na+/K+$ transporting, alpha	-2.05	4.1	3.03356-00	INO	
19	272	AMDD3	2 polypeptide	1 1 1	9.9	2 22010 06	No	N
12	8436	SDPR	sorum doprivation rosponso	1.11	2.2	3.83060.06	No	
14	25953	PNKD	parovysmal nonkinesigenic dyskinesia	1.10	2.5	5.05000-00	No	
15	29305	CXCL2	chemokine (C-X-C motif) ligand 2	2.71	6.6	5.1842e-06	No	N
16	150000	ABCC13	ATP-binding cassette sub-family C	2.71 2.54	5.8	6.0462e-06	Ves	V
10	100000	Indeelo	(CFTR/MRP), member 13, pseudo-	2.01		0.01020.00	100	1
			gene					
17	5727	PTCH1	patched 1	-1.09	2.1	6.2643e-06	No	N
18	8787	RGS9	regulator of G-protein signaling 9	-1.22	2.3	7.1268e-06	No	N
19	139065	SLITRK4	SLIT and NTRK-like family, member 4	-1.91	3.8	9.2066e-06	No	N
20	4689	NCF4	neutrophil cytosolic factor 4, 40kDa	1.03	2.0	1.0001e-05	No	N
21	84186	ZCCHC7	zinc finger, CCHC domain containing 7	-0.93	1.9	1.1973e-05	No	N
22	257218	SHPRH	SNF2 histone linker PHD RING heli-	-1.01	2.0	1.2032e-05	Yes	N
			case, E3 ubiquitin protein ligase					
23	6648	SOD2	superoxide dismutase 2, mitochondrial	3.07	8.4	1.3951e-05	No	N
24	79739	TTLL7	tubulin tyrosine ligase-like family,	-1.47	2.8	1.6602e-05	No	N
			member 7					
25	7076	TIMP1	TIMP metallopeptidase inhibitor 1	1.32	2.5	1.6886e-05	No	N
26	2549	GAB1	GRB2-associated binding protein 1	-1.24	2.4	1.7897e-05	No	N
27	3257	HPS1	Hermansky-Pudlak syndrome 1	1.05	2.1	1.8493e-05	Yes	Y
28	2239	GPC4	glypican 4	-0.93	1.9	1.8834e-05	No	N
29	83468	GLT8D2	glycosyltransferase 8 domain containing	-1.68	3.2	1.9156e-05	No	N
		H 4D 0	2			0.0004.05		
30	7850	ILIR2	interleukin I receptor, type II	2.34	5.0	2.0284e-05	NO N	
31	4139	MARKI	MAP/microtubule affinity-regulating	-0.96	1.9	2.0820e-05	INO	
0	0100		Kinase 1	1.09	0.1			
32	2180	AUSLI	acyi-CoA synthetase long-chain family	1.03	3.1	2.08586-05		
			Incurner T			1	1	1

			Table 12 – continued from previous page					
33	4069	LYZ	lysozyme	3.90	14.9	2.2290e-05	No	N
34	7357	UGCG	UDP-glucose ceramide glucosyltrans-	1.35	2.5	2.4131e-05	No	N
			ferase					
35	1287	COL4A5	collagen, type IV, alpha 5	-1.04	2.1	2.6186e-05	No	N
36	3718	JAK3	Janus kinase 3	1.10	2.1	2.6820e-05	No	N
37	4318	MMP9	matrix metallopeptidase 9 (gelatinase	1.58	3.0	2.8587e-05	No	N
			B, 92kDa gelatinase, 92kDa type IV col-					
			lagenase)					
38	151742	PPM1L	protein phosphatase, Mg2+/Mn2+ de-	-1.72	3.3	2.8727e-05	No	N
			pendent, 1L					
39	2729	GCLC	glutamate-cysteine ligase, catalytic	2.06	4.2	2.9372e-05	Yes	Y
			subunit					
40	51306	FAM13B	family with sequence similarity 13,	-1.13	2.2	2.9782e-05	No	N
			member B					
41	5196	PF4	platelet factor 4	1.90	3.7	3.0030e-05	No	N
42	55082	ARGLU1	arginine and glutamate rich 1	-1.41	2.7	3.0045e-05	No	N
43	6347	CCL2	chemokine (C-C motif) ligand 2	3.31	9.9	3.1674e-05	No	N
44	56829	ZC3HAV1	zinc finger CCCH-type, antiviral 1	1.59	3.0	3.1761e-05	Yes	Y
45	3671	ISLR	immunoglobulin superfamily contain-	-1.51	2.9	3.2474e-05	No	N
			ing leucine-rich repeat					
46	130271	PLEKHH2	pleckstrin homology domain contain-	-1.56	3.0	3.5350e-05	No	N
			ing, family H (with MyTH4 domain)					
			member 2					
47	5473	PPBP	pro-platelet basic protein (chemokine	4.84	28.7	3.5480e-05	No	N
			(C-X-C motif) ligand 7)					
48	2258	FGF13	fibroblast growth factor 13	-1.09	2.1	3.6003e-05	No	N
49	10395	DLC1	DLC1 Rho GTPase activating protein	-1.27	2.4	3.7680e-05	No	N
50	150381	PRR34-AS1	PRR34 antisense RNA 1	-1.12	2.2	3.9134e-05	Yes	Ν
51	80896	NPL	N-acetylneuraminate pyruvate lyase	1.09	2.1	4.0651e-05	Yes	Ν
			(dihydrodipicolinate synthase)					
52	2857	GPR34	G protein-coupled receptor 34	-1.21	2.3	4.2178e-05	No	N
53	57126	CD177	CD177 molecule	1.05	2.1	4.4156e-05	No	N
54	5926	ARID4A	AT rich interactive domain 4A (RBP1-	-1.30	2.5	4.4708e-05	Yes	N
			like)					
55	199675	MCEMP1	mast cell-expressed membrane protein	1.91	3.7	4.8061e-05	No	N
			1					
56	118924	FRA10AC1	fragile site, folic acid type, rare,	-1.02	2.0	4.8782e-05	Yes	N
			fra(10)(q23.3) or $fra(10)(q24.2)$ candi-					
	F 100F	DODN1	date 1	1.40		5 0000 05	37	
57	54665	RSBNI	round spermatid basic protein 1	-1.48	2.8	5.0038e-05	Yes	
58	55250	ELP2	elongator acetyltransferase complex	-1.02	2.0	5.3422e-05	Yes	IN
50	6509		subunit 2	0.01	1.0	F 6207 OF	v	
- 59	0585	SLC22A4	solute carrier family 22 (organic	2.01	4.0	5.0387e-05	res	IN
			cation/zwitterion transporter), mem-					
60	2046	UDE1	ber 4 homoglobin engiler 1	1 96	20.6	5 76740 05	Voc	
61	5156		platelet derived growth factor recenter	4.00	20.0	5 85740 05	No	I
01	0100	IDGI'NA	alpha polypentide	1.00	0.1	0.00746-00	INO	
62	508	BCI 9I 1	BCL2-like 1	2.28	10	5 90070 05	Vog	N
63	84052	CCNL1	cingulin-like 1	_1.20	9.1	5.9071e-05	No	
64	154043	CNKSR3	CNKSB family member 3	-1.07	2.1	5.9344e-05	No	N
65	70/15	C17orf69	chromosome 17 open reading frame 69	0.03	1.0	6 26820-05	No	
00	10410		on onosonic 11 open reading frame 02	0.00	1.0	0.20020-00	110	1 1

Table 12 – continued from previous page

				Table 12 – continued from previous page					
	66	151987	PPP4R2	protein phosphatase 4, regulatory sub- unit 2	1.03	2.0	6.3269e-05	No	N
ŀ	67	1825	DSC3	desmocollin 3	-1.36	2.6	6.4843e-05	No	N
ľ	68	9547	CXCL14	chemokine (C-X-C motif) ligand 14	-2.05	4.1	6.9885e-05	No	Ν
ľ	69	2235	FECH	ferrochelatase	3.22	9.3	7.2018e-05	Yes	Y
	70	119504	ANAPC16	anaphase promoting complex subunit 16	-0.94	1.9	7.2154e-05	No	N
ľ	71	80333	KCNIP4	Kv channel interacting protein 4	-0.93	1.9	7.2333e-05	No	N
I	72	602	BCL3	B-cell CLL/lymphoma 3	1.09	2.1	7.3660e-05	No	N
I	73	2876	GPX1	glutathione peroxidase 1	1.22	2.3	7.3767e-05	Yes	N
I	74	6374	CXCL5	chemokine (C-X-C motif) ligand 5	2.93	7.6	7.4658e-05	No	N
	75	121536	AEBP2	AE binding protein 2	-1.00	2.0	7.6443e-05	No	N
	76	56952	PRTFDC1	phosphoribosyl transferase domain con- taining 1	-1.74	3.3	7.7466e-05	No	N
	77	100128252	ZNF667-AS1	ZNF667 antisense RNA 1 (head to head)	-1.10	2.1	7.7973e-05	Yes	N
ľ	78	56947	MFF	mitochondrial fission factor	-1.02	2.0	7.8197e-05	Yes	N
ľ	79	84281	C2orf88	chromosome 2 open reading frame 88	1.50	2.8	7.8640e-05	Yes	Y
	80	5348	FXYD1	FXYD domain containing ion transport regulator 1	-1.13	2.2	8.4555e-05	No	N
	81	12	SERPINA3	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3	1.19	2.3	8.5122e-05	No	N
ľ	82	5118	PCOLCE	procollagen C-endopeptidase enhancer	-1.24	2.4	9.2349e-05	Yes	Y
	83	51386	EIF3L	eukaryotic translation initiation factor 3, subunit L	-0.86	1.8	9.4464e-05	Yes	N
ĺ	84	4815	NINJ2	ninjurin 2	1.87	3.6	9.7903e-05	Yes	N
	85	54477	PLEKHA5	pleckstrin homology domain contain- ing, family A member 5	-1.09	2.1	9.8958e-05	No	N
	86	64431	ACTR6	ARP6 actin-related protein 6 homolog (yeast)	-0.96	1.9	1.0233e-04	Yes	N
Ì	87	55783	CMTR2	cap methyltransferase 2	-0.77	1.7	1.0259e-04	Yes	N
ľ	88	115330	GPR146	G protein-coupled receptor 146	1.45	2.7	1.0303e-04	Yes	Y
ľ	89	9180	OSMR	oncostatin M receptor	1.09	2.1	1.0338e-04	No	N
ľ	90	4594	MUT	methylmalonyl CoA mutase	-0.83	1.8	1.0531e-04	No	N
	91	11099	PTPN21	protein tyrosine phosphatase, non- receptor type 21	-0.85	1.8	1.0946e-04	No	N
I	92	7750	ZMYM2	zinc finger, MYM-type 2	-1.16	2.2	1.1603e-04	Yes	Y
	93	23379	ICE1	interactor of little elongator complex ELL subunit 1	-0.81	1.8	1.1612e-04	Yes	N
ľ	94	2332	FMR1	fragile X mental retardation 1	-1.00	2.0	1.1909e-04	No	N
ľ	95	100288911	LOC100288911	uncharacterized LOC100288911	-0.97	2.0	1.1935e-04	No	N
ľ	96	57608	KIAA1462	KIAA1462	-1.13	2.2	1.2029e-04	Yes	N
I	97	195828	ZNF367	zinc finger protein 367	-1.35	2.6	1.2396e-04	No	N
ľ	98	148203	ZNF738	zinc finger protein 738	-1.01	2.0	1.2452e-04	Yes	N
ĺ	99	7001	PRDX2	peroxiredoxin 2	2.13	4.4	1.2503e-04	Yes	Y
	100	143684	FAM76B	family with sequence similarity 76, member B	-0.95	1.9	1.3008e-04	Yes	N
ľ	101	51759	C9orf78	chromosome 9 open reading frame 78	1.62	3.1	1.3208e-04	Yes	Y
ľ	102	81578	COL21A1	collagen, type XXI, alpha 1	-1.36	2.6	1.3290e-04	No	N
ľ	103	23376	UFL1	UFM1-specific ligase 1	-0.88	1.8	1.3333e-04	Yes	N
ľ	104	3480	IGF1R	insulin-like growth factor 1 receptor	-1.14	2.2	1.3629e-04	Yes	Y
-1									

Table 12 – continued from previous page

			Table 12 – continued from previous page					
105	27102	EIF2AK1	eukaryotic translation initiation factor 2-alpha kinase 1	2.06	4.2	1.3903e-04	Yes	Y
106	80232	WDR26	WD repeat domain 26	2.47	5.5	1.4085e-04	Yes	Y
107	27252	KLHL20	kelch-like family member 20	-0.82	1.8	1.4096e-04	Yes	N
108	4239	MFAP4	microfibrillar-associated protein 4	-1.41	2.7	1.4175e-04	No	N
109	79884	MAP9	microtubule-associated protein 9	-0.94	1.9	1.5144e-04	No	N
110	200014	CC2D1B	coiled-coil and C2 domain containing 1B	0.94	1.9	1.5193e-04	Yes	Y
111	26127	FGFR10P2	FGFR1 oncogene partner 2	2.59	6.0	1.5546e-04	Yes	N
112	4603	MYBL1	v-myb avian myeloblastosis viral onco- gene homolog-like 1	-1.01	2.0	1.5672e-04	Yes	N
113	7247	TSN	translin	-0.98	2.0	1.5895e-04	Yes	N
114	5265	SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	1.88	3.7	1.6094e-04	No	N
115	9474	ATG5	autophagy related 5	-0.78	1.7	1.6205e-04	No	N
116	80817	CEP44	centrosomal protein 44kDa	-1.09	2.1	1.6331e-04	No	N
117	79834	PEAK1	pseudopodium-enriched atypical kinase 1	-0.85	1.8	1.6477e-04	Yes	N
118	3741	KCNA5	potassium voltage-gated channel, shaker-related subfamily, member 5	-1.52	2.9	1.6654e-04	No	N
119	4542	MYO1F	myosin IF	1.15	2.2	1.6738e-04	No	N
120	3298	HSF2	heat shock transcription factor 2	-0.86	1.8	1.6975e-04	Yes	N
121	51274	KLF3	Kruppel-like factor 3 (basic)	1.73	3.3	1.7069e-04	Yes	Y
122	6478	SIAH2	siah E3 ubiquitin protein ligase 2	1.63	3.1	1.7290e-04	Yes	N
123	669	BPGM	2,3-bisphosphoglycerate mutase	4.77	27.3	1.7331e-04	Yes	Y
124	6146	RPL22	ribosomal protein L22	-0.81	1.8	1.7416e-04	Yes	N
125	57631	LRCH2	leucine-rich repeats and calponin ho- mology (CH) domain containing 2	-1.51	2.8	1.7442e-04	No	N
126	84901	NFATC2IP	nuclear factor of activated T-cells, cyto- plasmic, calcineurin-dependent 2 inter- acting protein	-0.63	1.5	1.7493e-04	Yes	N
127	338707	B4GALNT4	beta-1,4-N-acetyl-galactosaminyl trans- ferase 4	0.69	1.6	1.7558e-04	Yes	Y
128	10135	NAMPT	nicotinamide phosphoribosyltrans- ferase	2.37	5.2	1.7851e-04	No	N
129	9235	IL32	interleukin 32	1.38	2.6	1.7890e-04	No	N
130	100507303	SNHG19	small nucleolar RNA host gene 19 (non- protein coding)	-1.16	2.2	1.8654e-04	No	N
131	10661	KLF1	Kruppel-like factor 1 (erythroid)	1.86	3.6	1.9437e-04	Yes	Y
132	81624	DIAPH3	diaphanous-related formin 3	-0.95	1.9	1.9518e-04	No	N
133	26033	ATRNL1	attractin-like 1	-1.51	2.8	1.9794e-04	No	N
134	1657	DMXL1	Dmx-like 1	-0.75	1.7	1.9878e-04	Yes	N
135	1122	CHML	choroideremia-like (Rab escort protein 2)	-1.31	2.5	1.9999e-04	No	N
136	5747	PTK2	protein tyrosine kinase 2	-0.88	1.8	2.0444e-04	No	N
137	7130	TNFAIP6	tumor necrosis factor, alpha-induced protein 6	1.97	3.9	2.0702e-04	No	N
138	5806	PTX3	pentraxin 3, long	4.08	16.9	2.1541e-04	No	N
139	629	CFB	complement factor B	1.97	3.9	2.1541e-04	No	N
140	983	CDK1	cyclin-dependent kinase 1	-0.70	1.6	2.1546e-04	Yes	Y
141	51327	AHSP	alpha hemoglobin stabilizing protein	4.25	19.1	2.1783e-04	Yes	Y

Table 12 – continued from previous page

		1	Table 12 – continued from previous page					
142	7504	XK	X-linked Kx blood group	4.09	17.0	2.1953e-04	Yes	Y
143	433	ASGR2	asialoglycoprotein receptor 2	0.84	1.8	2.2346e-04	No	N
144	3290	HSD11B1	hydroxysteroid (11-beta) dehydroge- nase 1	1.24	2.4	2.3104e-04	No	N
145	85313	PPIL4	peptidylprolyl isomerase (cyclophilin)- like 4	-0.59	1.5	2.3419e-04	Yes	Y
146	79074	C2orf49	chromosome 2 open reading frame 49	-0.86	1.8	2.3473e-04	Yes	N
147	657	BMPR1A	bone morphogenetic protein receptor,	-1.05	2.1	2.3648e-04	No	N
148	11027	LILRA2	leukocyte immunoglobulin-like recep- tor, subfamily A (with TM domain), member 2	0.93	1.9	2.3653e-04	No	N
149	2995	GYPC	glycophorin C (Gerbich blood group)	1.87	3.7	2.4025e-04	Yes	N
150	7133	TNFRSF1B	tumor necrosis factor receptor super- family, member 1B	1.10	2.1	2.4053e-04	No	N
151	1719	DHFR	dihydrofolate reductase	-0.71	1.6	2.4152e-04	Yes	N
152	23306	TMEM194A	transmembrane protein 194A	-0.98	2.0	2.4232e-04	Yes	N
153	196047	EMX2OS	EMX2 opposite strand/antisense RNA	-0.98	2.0	2.4258e-04	No	N
154	81027	TUBB1	tubulin, beta 1 class VI	2.11	4.3	2.4714e-04	Yes	N
155	9055	PRC1	protein regulator of cytokinesis 1	-1.22	2.3	2.4883e-04	No	N
156	2018	EMX2	empty spiracles homeobox 2	-1.18	2.3	2.5046e-04	No	N
157	5789	PTPRD	protein tyrosine phosphatase, receptor type, D	-1.35	2.5	2.5515e-04	No	N
158	25853	DCAF12	DDB1 and CUL4 associated factor 12	3.50	11.3	2.5591e-04	Yes	Y
159	10318	TNIP1	TNFAIP3 interacting protein 1	1.10	2.1	2.5768e-04	No	N
160	54463	FAM134B	family with sequence similarity 134, member B	-0.85	1.8	2.6001e-04	Yes	Y
161	1052	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	1.34	2.5	2.6038e-04	No	N
162	9706	ULK2	unc-51 like autophagy activating kinase 2	-0.69	1.6	2.6213e-04	No	N
163	3590	IL11RA	interleukin 11 receptor, alpha	-1.02	2.0	2.6556e-04	No	N
164	6210	RPS15A	ribosomal protein S15a	-0.88	1.8	2.6677e-04	No	N
165	1305	COL13A1	collagen, type XIII, alpha 1	-1.32	2.5	2.7259e-04	No	N
166	25878	MXRA5	matrix-remodelling associated 5	-2.35	5.1	2.7442e-04	Yes	Y
167	11163	NUDT4	nudix (nucleoside diphosphate linked moiety X)-type motif 4	2.62	6.2	2.7635e-04	Yes	Y
168	23514	SPIDR	scaffolding protein involved in DNA re- pair	1.47	2.8	2.8072e-04	No	N
169	27109	ATP5S	ATP synthase, H+ transporting, mito- chondrial Fo complex, subunit s (factor B)	-1.00	2.0	2.8107e-04	No	N
170	100507311	LOC100507311	uncharacterized LOC100507311	-1.28	2.4	2.8366e-04	No	N
171	84932	RAB2B	RAB2B, member RAS oncogene family	1.53	2.9	2.9007e-04	Yes	Y
172	84188	FAR1	fatty acyl CoA reductase 1	-0.91	1.9	2.9142e-04	Yes	Y
173	2268	FGR	FGR proto-oncogene, Src family tyro- sine kinase	1.28	2.4	2.9645e-04	No	N
174	80315	CPEB4	cytoplasmic polyadenylation element binding protein 4	2.02	4.1	3.0077e-04	No	N
175	6286	S100P	S100 calcium binding protein P	1.35	2.5	3.0332e-04	No	N
176	10486	CAP2	CAP, adenylate cyclase-associated pro- tein, 2 (yeast)	-0.88	1.8	3.0665e-04	No	N

			Table 12 continued noin previous page					
177	11098	PRSS23	protease, serine, 23	-0.93	1.9	3.0830e-04	Yes	N
178	347902	AMIGO2	adhesion molecule with Ig-like domain	-1.70	3.3	3.1764e-04	No	N
170	5205			0.00	4.1	2 1000 04	V	
179	5305	PIP4K2A	phosphatidylinositol-5-phosphate	2.02	4.1	3.1989e-04	res	IN
100	57590	AL DU9	4-kinase, type II, aipna	1.01	2.0	2 0120- 04	V	V
180	07038	ALPK3	aipna-kinase 3	-1.01	2.0	3.2138e-04	res	Y N
181	23213	SULF1	sulfatase 1	1.20	2.4	3.2524e-04	NO N	
182	79974	CPEDI	containing 1	-1.03	2.0	3.2798e-04	NO	
183	9849	ZNF518A	zinc finger protein 518A	-0.90	1.9	3.2985e-04	Yes	N
184	140733	MACROD2	MACRO domain containing 2	-0.86	1.8	3.3136e-04	No	N
185	286205	SCAI	suppressor of cancer cell invasion	-1.36	2.6	3.3250e-04	No	N
186	5743	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cy- clooxygenase)	1.73	3.3	3.3267e-04	No	N
187	716	C1S	complement component 1, s subcompo- nent	1.01	2.0	3.3622e-04	No	N
188	5927	KDM5A	lysine (K)-specific demethylase 5A	-0.90	1.9	3.3667e-04	Yes	Y
189	9021	SOCS3	suppressor of cytokine signaling 3	1.67	3.2	3.3740e-04	No	N
190	55120	FANCL	Fanconi anemia, complementation group L	-1.25	2.4	3.4315e-04	No	N
191	286827	TRIM59	tripartite motif containing 59	-0.82	1.8	3.4318e-04	Yes	N
192	81620	CDT1	chromatin licensing and DNA replica- tion factor 1	0.88	1.8	3.4456e-04	Yes	Y
193	284	ANGPT1	angiopoietin 1	-1.04	2.1	3.4845e-04	No	N
194	64795	RMND5A	required for meiotic nuclear division 5 homolog A (S. cerevisiae)	2.45	5.5	3.5520e-04	Yes	Y
195	781	CACNA2D1	calcium channel, voltage-dependent, al- pha 2/delta subunit 1	-0.95	1.9	3.5544e-04	No	N
196	9306	SOCS6	suppressor of cytokine signaling 6	-0.88	1.8	3.6194e-04	Yes	N
197	1021	CDK6	cyclin-dependent kinase 6	-0.90	1.9	3.6296e-04	No	N
198	6815	STYX	serine/threonine/tyrosine interacting protein	-0.85	1.8	3.6379e-04	No	N
199	9852	EPM2AIP1	EPM2A (laforin) interacting protein 1	-1.10	2.1	3.6421e-04	Yes	N
200	9945	GFPT2	glutamine-fructose-6-phosphate transaminase 2	0.73	1.7	3.6746e-04	No	N
201	51575	ESF1	ESF1, nucleolar pre-rRNA processing protein, homolog (S. cerevisiae)	-0.95	1.9	3.6779e-04	Yes	Y
202	360023	ZBTB41	zinc finger and BTB domain containing 41	-0.97	2.0	3.6920e-04	Yes	N
203	387647	PTCHD3P1	patched domain containing 3 pseudo- gene 1	-0.73	1.7	3.7156e-04	Yes	N
204	84164	ASCC2	activating signal cointegrator 1 complex subunit 2	1.40	2.6	3.7229e-04	Yes	Y
205	324	APC	adenomatous polyposis coli	-0.93	1.9	3.7702e-04	No	N
206	55363	HEMGN	hemogen	4.16	17.9	3.7829e-04	Yes	Y
207	22929	SEPHS1	selenophosphate synthetase 1	-0.79	1.7	3.7841e-04	No	N
208	8622	PDE8B	phosphodiesterase 8B	-0.99	2.0	3.8307e-04	No	N
209	9535	GMFG	glia maturation factor, gamma	1.29	2.4	3.8716e-04	No	N
210	5494	PPM1A	protein phosphatase, Mg2+/Mn2+ de- pendent, 1A	1.34	2.5	3.8891e-04	Yes	Y

Table 12 – continued from previous page

			Table 12 – continued from previous page					
211	645	BLVRB	biliverdin reductase B (flavin reductase (NADPH))	2.91	7.5	3.9199e-04	Yes	Y
212	49854	ZBTB21	zinc finger and BTB domain containing 21	-0.96	1.9	3.9320e-04	Yes	Y
213	57570	TRMT5	tRNA methyltransferase 5	-0.66	1.6	3.9961e-04	Yes	N
214	397	ARHGDIB	Rho GDP dissociation inhibitor (GDI)	1.15	2.2	4.0923e-04	No	N
			beta					
215	374354	NHLRC2	NHL repeat containing 2	-0.63	1.5	4.1586e-04	No	N
216	8175	SF3A2	splicing factor 3a, subunit 2, 66kDa	-0.77	1.7	4.1649e-04	No	N
217	166815	TIGD2	tigger transposable element derived 2	-0.63	1.6	4.2106e-04	Yes	N
218	57037	ANKMY2	ankyrin repeat and MYND domain con- taining 2	-0.86	1.8	4.2411e-04	No	N
219	85461	TANC1	tetratricopeptide repeat, ankyrin re- peat and coiled-coil containing 1	-0.85	1.8	4.2840e-04	Yes	Y
220	4354	MPP1	membrane protein, palmitoylated 1, 55kDa	3.04	8.2	4.3698e-04	Yes	Y
221	57494	RIMKLB	ribosomal modification protein rimK- like family member B	-1.07	2.1	4.4145e-04	No	N
222	8031	NCOA4	nuclear receptor coactivator 4	2.58	6.0	4.4693e-04	Yes	Y
223	10632	ATP5L	ATP synthase, H+ transporting, mito- chondrial Fo complex, subunit G	-0.89	1.9	4.4977e-04	No	N
224	9829	DNAJC6	DnaJ (Hsp40) homolog, subfamily C, member 6	1.86	3.6	4.5768e-04	Yes	Y
225	58191	CXCL16	chemokine (C-X-C motif) ligand 16	1.25	2.4	4.5967e-04	Yes	N
226	3045	HBD	hemoglobin, delta	1.98	4.0	4.6247e-04	Yes	Y
227	8780	RIOK3	RIO kinase 3	2.64	6.2	4.6346e-04	Yes	Y
228	715	C1R	complement component 1, r subcompo- nent	1.20	2.3	4.6446e-04	No	N
229	140739	UBE2F	ubiquitin-conjugating enzyme E2F (pu- tative)	0.88	1.8	4.6701e-04	Yes	Y
230	6622	SNCA	synuclein, alpha (non A4 component of amyloid precursor)	5.43	43.2	4.7673e-04	Yes	Y
231	23089	PEG10	paternally expressed 10	-0.77	1.7	4.7984e-04	No	N
232	8760	CDS2	CDP-diacylglycerol synthase (phos- phatidate cytidylyltransferase) 2	-0.77	1.7	4.8043e-04	Yes	N
233	55074	OXR1	oxidation resistance 1	-0.83	1.8	4.8274e-04	Yes	N
234	25893	TRIM58	tripartite motif containing 58	3.42	10.7	4.8505e-04	Yes	Y
235	63899	NSUN3	NOP2/Sun domain family, member 3	1.53	2.9	4.9077e-04	Yes	Y
236	6303	SAT1	spermidine/spermine N1- acetyltransferase 1	1.08	2.1	4.9152e-04	No	N
237	23506	GLTSCR1L	GLTSCR1-like	-0.82	1.8	4.9344e-04	Yes	N
238	590	BCHE	butyrylcholinesterase	-1.49	2.8	4.9912e-04	No	N
239	100130581	LINC00910	long intergenic non-protein coding RNA 910	1.66	3.1	5.0447e-04	Yes	Y
240	6398	SECTM1	secreted and transmembrane 1	0.68	1.6	5.0490e-04	No	N
241	25884	CHRDL2	chordin-like 2	1.56	2.9	5.0500e-04	No	N
$24\overline{2}$	23762	OSBP2	oxysterol binding protein 2	1.80	3.5	5.0624e-04	Yes	Ŷ
243	112476	PRRT2	proline-rich transmembrane protein 2	-1.12	2.2	5.1077e-04	No	N
244	4978	OPCML	opioid binding protein/cell adhesion molecule-like	-1.52	2.9	5.1648e-04	No	N
245	55632	G2E3	G2/M-phase specific E3 ubiquitin pro- tein ligase	-0.68	1.6	5.1880e-04	Yes	N

			Table 12 – continued from previous page					
246	212	ALAS2	aminolevulinate, delta-, synthase 2	5.02	32.6	5.2418e-04	Yes	Y
247	55544	RBM38	RNA binding motif protein 38	2.33	5.0	5.2563e-04	Yes	Y
248	57326	PBXIP1	pre-B-cell leukemia homeobox interact-	-0.90	1.9	5.3210e-04	No	N
			ing protein 1					
249	27303	RBMS3	RNA binding motif, single stranded in-	-1.04	2.1	5.3285e-04	No	N
			teracting protein 3					
250	2035	EPB41	erythrocyte membrane protein band 4.1	3.59	12.0	5.3581e-04	Yes	Y
251	10010	TANK	TRAF family member-associated	0.90	1.9	5.4048e-04	Yes	N
			NFKB activator					
252	412	STS	steroid sulfatase (microsomal), isozyme	-1.06	2.1	5.4657e-04	No	N
			S					
253	116151	FAM210B	family with sequence similarity 210,	2.12	4.4	5.4679e-04	Yes	Y
			member B					
254	8515	ITGA10	integrin, alpha 10	-1.02	2.0	5.5357e-04	No	N
255	6843	VAMP1	vesicle-associated membrane protein 1	-1.00	2.0	5.5468e-04	Yes	N
			(synaptobrevin 1)					
256	81792	ADAMTS12	ADAM metallopeptidase with throm-	-0.93	1.9	5.5545e-04	Yes	N
			bospondin type 1 motif, 12					
257	3899	AFF3	AF4/FMR2 family, member 3	-1.17	2.3	5.5628e-04	No	N
258	6565	SLC15A2	solute carrier family 15 (oligopeptide	-1.06	2.1	5.5665e-04	No	N
			transporter), member 2					
259	8818	DPM2	dolichyl-phosphate mannosyltrans-	0.97	2.0	5.5863e-04	Yes	N
			ferase polypeptide 2, regulatory					
			subunit					
260	4900	NRGN	neurogranin (protein kinase C sub-	1.12	2.2	5.6083e-04	Yes	N
			strate, RC3)					
261	6872	TAF1	TAF1 RNA polymerase II, TATA box	-0.66	1.6	5.6325e-04	Yes	N
			binding protein (TBP)-associated fac-					
			tor, 250kDa					
262	23582	CCNDBP1	cyclin D-type binding-protein 1	1.98	3.9	5.6327e-04	Yes	Y
263	79666	PLEKHF2	pleckstrin homology domain contain-	-0.77	1.7	5.6965e-04	Yes	N
			ing, family F (with FYVE domain)					
			member 2					
264	3043	HBB	hemoglobin, beta	3.33	10.1	5.8187e-04	Yes	Y
265	6813	STXBP2	syntaxin binding protein 2	1.37	2.6	5.8356e-04	No	N
266	10457	GPNMB	glycoprotein (transmembrane) nmb	-1.19	2.3	5.8650e-04	Yes	N
267	51390	AIG1	androgen-induced 1	-1.11	2.2	5.8915e-04	No	N
268	2038	EPB42	erythrocyte membrane protein band 4.2	4.02	16.2	5.9060e-04	Yes	Y
269	23411	SIRT1	sirtuin 1	-0.78	1.7	5.9356e-04	Yes	N
270	27090	ST6GALNAC4	ST6 (alpha-N-acetyl-neuraminyl-	0.91	1.9	6.0340e-04	Yes	Y
			2,3-beta-galactosyl-1,3)-N-					
			acetylgalactosaminide alpha-2,6-					
			sialyltransferase 4					
271	50943	FOXP3	forkhead box P3	0.64	1.6	6.0913e-04	Yes	Y
272	2752	GLUL	glutamate-ammonia ligase	2.26	4.8	6.1231e-04	No	N
273	284406	ZFP82	ZFP82 zinc finger protein	-0.79	1.7	6.1308e-04	Yes	N
274	51596	CUTA	cutA divalent cation tolerance homolog	-0.80	1.7	6.1361e-04	Yes	N
			(E. coli)	-				
275	64174	DPEP2	dipeptidase 2	-0.94	1.9	6.1689e-04	No	N
276	23076	RRP1B	ribosomal RNA processing 1B	-0.71	1.6	6.1722e-04	Yes	Y
277	202018	TAPT1	transmembrane anterior posterior	-0.72	1.6	6.2030e-04	Yes	N
			transformation 1					

_			Table 12 – continued from previous page					
278	57082	CASC5	cancer susceptibility candidate 5	-0.74	1.7	6.2212e-04	Yes	Y
279	665	BNIP3L	BCL2/adenovirus E1B 19kDa interact- ing protein 3-like	2.44	5.4	6.2700e-04	Yes	N
280	3044	HBBP1	hemoglobin, beta pseudogene 1	1.91	3.8	6.3088e-04	Yes	Y
281	5784	PTPN14	protein tyrosine phosphatase, non- receptor type 14	-1.32	2.5	6.3100e-04	No	N
282	5008	OSM	oncostatin M	0.80	1.7	6.3899e-04	No	N
283	100190939	TPT1-AS1	TPT1 antisense RNA 1	-1.18	2.3	6.4169e-04	Yes	Y
284	948	CD36	CD36 molecule (thrombospondin recep- tor)	1.93	3.8	6.4382e-04	No	N
285	286042	FAM86B3P	family with sequence similarity 86, member A pseudogene	1.91	3.8	6.4417e-04	Yes	Y
286	9263	STK17A	serine/threonine kinase 17a	1.19	2.3	6.4418e-04	Yes	Y
287	23236	PLCB1	phospholipase C, beta 1 (phosphoinositide-specific)	-1.28	2.4	6.5178e-04	No	N
288	54855	FAM46C	family with sequence similarity 46, member C	4.88	29.5	6.5696e-04	Yes	Y
289	51029	DESI2	desumoylating isopeptidase 2	-1.20	2.3	6.6680e-04	Yes	N
290	80853	KDM7A	lysine (K)-specific demethylase 7A	1.67	3.2	6.7034e-04	No	N
291	388743	CAPN8	calpain 8	0.71	1.6	6.9090e-04	Yes	Y
292	23435	TARDBP	TAR DNA binding protein	-0.97	2.0	6.9099e-04	Yes	N
293	27013	CNPPD1	cyclin Pas1/PHO80 domain containing 1	1.11	2.2	6.9708e-04	Yes	N
294	2801	GOLGA2	golgin A2	-1.35	2.5	7.0006e-04	Yes	Y
295	55437	STRADB	STE20-related kinase adaptor beta	3.26	9.6	7.0059e-04	Yes	Y
296	4093	SMAD9	SMAD family member 9	-1.24	2.4	7.0067e-04	No	N
297	220972	MARCH8	membrane-associated ring finger (C3HC4) 8, E3 ubiquitin protein ligase	2.15	4.4	7.0228e-04	Yes	Y
298	6563	SLC14A1	solute carrier family 14 (urea transporter), member 1 (Kidd blood group)	2.24	4.7	7.0262e-04	Yes	Y
299	64770	CCDC14	coiled-coil domain containing 14	-0.64	1.6	7.1191e-04	Yes	N
300	10675	CSPG5	chondroitin sulfate proteoglycan 5 (neuroglycan C)	-0.88	1.8	7.2079e-04	No	N
301	340481	ZDHHC21	zinc finger, DHHC-type containing 21	-0.82	1.8	7.2170e-04	Yes	Y
302	51203	NUSAP1	nucleolar and spindle associated protein 1	-1.11	2.2	7.2254e-04	Yes	Y
303	55088	CCDC186	coiled-coil domain containing 186	-0.74	1.7	7.2289e-04	Yes	N
304	8404	SPARCL1	SPARC-like 1 (hevin)	-1.17	2.3	7.2315e-04	No	N
305	6001	RGS10	regulator of G-protein signaling 10	2.20	4.6	7.2405e-04	Yes	N
306	84376	HOOK3	hook microtubule-tethering protein 3	-0.76	1.7	7.2542e-04	Yes	N
307	55719	FAM178A	family with sequence similarity 178, member A	-0.92	1.9	7.3976e-04	Yes	N
308	84935	MEDAG	mesenteric estrogen-dependent adipo- genesis	1.05	2.1	7.4487e-04	No	N
309	6006	RHCE	Rh blood group, CcEe antigens	1.17	2.2	7.6147e-04	Yes	Y
310	51094	ADIPOR1	adiponectin receptor 1	2.41	5.3	7.6235e-04	Yes	Y
311	55607	PPP1R9A	protein phosphatase 1, regulatory sub- unit 9A	-1.29	2.4	7.6863e-04	No	N
312	54210	TREM1	triggering receptor expressed on myeloid cells 1	0.87	1.8	7.7221e-04	No	N
313	23608	MKRN1	makorin ring finger protein 1	2.56	5.9	7.7575e-04	Yes	Y
314	4926	NUMA1	nuclear mitotic apparatus protein 1	-2.38	5.2	7.7616e-04	Yes	Y

			Table 12 – continued from previous page					
315	2977	GUCY1A2	guanylate cyclase 1, soluble, alpha 2	-1.23	2.3	7.8425e-04	No	N
316	539	ATP5O	ATP synthase, H+ transporting, mito-	-0.82	1.8	7.8750e-04	Yes	N
			chondrial F1 complex, O subunit					
317	9994	CASP8AP2	caspase 8 associated protein 2	-0.85	1.8	7.8887e-04	Yes	N
318	10923	SUB1	SUB1 homolog (S. cerevisiae)	-0.77	1.7	8.0010e-04	Yes	N
319	383	ARG1	arginase 1	0.77	1.7	8.0078e-04	Yes	N
320	3576	CXCL8	chemokine (C-X-C motif) ligand 8	2.72	6.6	8.0496e-04	No	N
321	4649	MYO9A	myosin IXA	-0.83	1.8	8.0726e-04	Yes	N
322	9958	USP15	ubiquitin specific peptidase 15	1.50	2.8	8.1234e-04	Yes	N
323	2993	GYPA	glycophorin A (MNS blood group)	3.96	15.6	8.1546e-04	Yes	Y
324	3042	HBM	hemoglobin, mu	4.51	22.8	8.1865e-04	Yes	Y
325	9921	RNF10	ring finger protein 10	1.26	2.4	8.2499e-04	Yes	Y
326	2994	GYPB	glycophorin B (MNS blood group)	3.37	10.4	8.2603e-04	Yes	Y
327	19	ABCA1	ATP-binding cassette, sub-family A	1.04	2.1	8.4459e-04	No	N
			(ABC1), member 1					
328	389114	ZNF662	zinc finger protein 662	-0.82	1.8	8.4671e-04	Yes	Y
329	79630	C1orf54	chromosome 1 open reading frame 54	-0.71	1.6	8.5018e-04	Yes	N
330	10766	TOB2	transducer of ERBB2, 2	-1.00	2.0	8.5056e-04	Yes	Y
331	54997	TESC	tescalcin	2.36	5.1	8.5294e-04	Yes	N
332	57531	HACE1	HECT domain and ankyrin repeat con-	-0.93	1.9	8.5572e-04	No	N
			taining E3 ubiquitin protein ligase 1					
333	4257	MGST1	microsomal glutathione S-transferase 1	1.13	2.2	8.5951e-04	No	N
334	481	ATP1B1	ATPase, $Na+/K+$ transporting, beta 1	-1.04	2.1	8.6017e-04	Yes	Y
			polypeptide					
335	23516	SLC39A14	solute carrier family 39 (zinc trans-	0.85	1.8	8.6207e-04	No	N
			porter), member 14					
336	11151	CORO1A	coronin, actin binding protein, 1A	1.32	2.5	8.7134e-04	No	N
337	8991	SELENBP1	selenium binding protein 1	2.49	5.6	8.7791e-04	Yes	N
338	3275	PRMT2	protein arginine methyltransferase 2	-1.09	2.1	9.0093e-04	No	N
339	84418	CYSTM1	cysteine-rich transmembrane module	1.29	2.4	9.2150e-04	Yes	N
			containing 1					
340	3049	HBQ1	hemoglobin, theta 1	3.11	8.7	9.2190e-04	Yes	Y
341	26122	EPC2	enhancer of polycomb homolog 2	-0.86	1.8	9.2859e-04	Yes	N
			(Drosophila)					
342	25793	FBX07	F-box protein 7	2.09	4.2	9.3451e-04	Yes	Y
343	80173	IFT74	intraflagellar transport 74	-0.89	1.8	9.3765e-04	Yes	N
344	5738	PTGFRN	prostaglandin F2 receptor inhibitor	-1.13	2.2	9.3912e-04	Yes	N
345	64130	LIN7B	lin-7 homolog B (C. elegans)	-0.75	1.7	9.4255e-04	Yes	N
346	55022	PID1	phosphotyrosine interaction domain	1.27	2.4	9.4622e-04	No	N
0.45	10.00		containing I	1.0.1		0.4500.04		
347	4066	LYL1	lymphoblastic leukemia associated	1.34	2.5	9.4799e-04	Yes	Y
0.40	<b>2</b> 000	D.4.Co	hematopoiesis regulator 1	1.10		0 5041 04		
348	5880	RAC2	ras-related C3 botulinum toxin sub-	1.12	2.2	9.5641e-04	No	N
			strate 2 (rho family, small GTP binding					
2.40	2.10	ATOXE	protein Rac2)	1.0.4		0.5545.04	17	
349	240	ALOX5	arachidonate 5-lipoxygenase	1.94	3.8	9.5747e-04	No	
350	22934	KPIA ATTE1	ribose 5-phosphate isomerase A		2.2	9.6453e-04	Yes	Y
351	11101	ATEI	arginyltransferase 1	-0.81	1.8	9.7734e-04	Yes	
352	0888	C2 C70	transaldolase 1	1.07	2.1	9.7783e-04	Yes	Y
353	285382	U3orf70	chromosome 3 open reading frame 70	-0.71	1.6	9.7909e-04	Yes	
354	83941	TM2D1	1 M2 domain containing 1	-0.84	1.8	9.8100e-04	Yes	N

Table 12 ntinued fr .

			Table 12 – continued from previous page					
355	8667	EIF3H	eukaryotic translation initiation factor 3, subunit H	-1.09	2.1	9.9160e-04	No	N
356	23216	TBC1D1	TBC1 (tre-2/USP6, BUB2, cdc16) do- main family member 1	-0.76	1.7	1.0007e-03	Yes	N
357	55084	SOBP	sine oculis binding protein homolog (Drosophila)	-1.13	2.2	1.0013e-03	Yes	N
358	93134	ZNF561	zinc finger protein 561	-0.81	1.8	1.0053e-03	No	N
359	57205	ATP10D	ATPase, class V, type 10D	-0.84	1.8	1.0077e-03	Yes	Y
360	22943	DKK1	dickkopf WNT signaling pathway in- hibitor 1	1.26	2.4	1.0099e-03	Yes	Y
361	124491	TMEM170A	transmembrane protein 170A	-0.77	1.7	1.0124e-03	Yes	Y
362	6521	SLC4A1	solute carrier family 4 (anion ex- changer), member 1 (Diego blood group)	3.48	11.2	1.0160e-03	Yes	Y
363	160897	GPR180	G protein-coupled receptor 180	-0.97	2.0	1.0218e-03	Yes	N
364	5054	SERPINE1	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1	1.16	2.2	1.0287e-03	No	Ň
365	1116	CHI3L1	chitinase 3-like 1 (cartilage glycoprotein-39)	2.36	5.1	1.0330e-03	No	N
366	3033	HADH	hydroxyacyl-CoA dehydrogenase	-0.91	1.9	1.0331e-03	No	N
367	23142	DCUN1D4	DCN1, defective in cullin neddylation 1, domain containing 4	-0.71	1.6	1.0343e-03	No	N
368	2766	GMPR	guanosine monophosphate reductase	1.85	3.6	1.0344e-03	Yes	N
369	5918	RARRES1	retinoic acid receptor responder (tazarotene induced) 1	1.25	2.4	1.0377e-03	No	N
370	54757	FAM20A	family with sequence similarity 20, member A	0.70	1.6	1.0422e-03	Yes	N
371	286	ANK1	ankyrin 1, erythrocytic	1.37	2.6	1.0441e-03	Yes	Y
372	2621	GAS6	growth arrest-specific 6	-1.00	2.0	1.0474e-03	Yes	N
373	5329	PLAUR	plasminogen activator, urokinase recep- tor	0.85	1.8	1.0572e-03	No	N
374	29994	BAZ2B	bromodomain adjacent to zinc finger domain, 2B	-0.90	1.9	1.0651e-03	Yes	N
375	79144	PPDPF	pancreatic progenitor cell differentia- tion and proliferation factor	-0.73	1.7	1.0736e-03	Yes	N
376	23658	LSM5	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)	-1.13	2.2	1.0742e-03	No	N
377	51196	PLCE1	phospholipase C, epsilon 1	-1.57	3.0	1.0767e-03	No	N
378	55704	CCDC88A	coiled-coil domain containing 88A	-0.72	1.6	1.0776e-03	Yes	N
379	4778	NFE2	nuclear factor, erythroid 2	3.73	13.2	1.0816e-03	No	N
380	3070	HELLS	helicase, lymphoid-specific	-0.61	1.5	1.0953e-03	Yes	N
381	55228	PNMAL1	paraneoplastic Ma antigen family-like 1	-1.68	3.2	1.1099e-03	No	N
382	1032	CDKN2D	cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)	1.34	2.5	1.1099e-03	Yes	N
383	57095	PITHD1	PITH (C-terminal proteasome- interacting domain of thioredoxin-like) domain containing 1	1.78	3.4	1.1161e-03	Yes	Y
384	9667	SAFB2	scaffold attachment factor B2	-0.71	1.6	1.1168e-03	Yes	N
385	643911	CRNDE	colorectal neoplasia differentially ex- pressed (non-protein coding)	-1.04	2.1	1.1180e-03	Yes	Y
386	4837	NNMT	nicotinamide N-methyltransferase	1.09	2.1	1.1184e-03	No	N

			Table 12 – continued from previous page					
387	150378	FLJ30901	uncharacterized protein FLJ30901	1.01	2.0	1.1257e-03	Yes	Y
388	23493	HEY2	hes-related family bHLH transcription factor with YRPW motif 2	-0.90	1.9	1.1348e-03	No	N
389	51629	SLC25A39	solute carrier family 25, member 39	3.21	9.3	1.1373e-03	Yes	Y
390	58494	JAM2	iunctional adhesion molecule 2	-0.92	1.9	1.1552e-03	No	N
391	10818	FRS2	fibroblast growth factor receptor sub-	-0.92	1.9	1.1714e-03	Yes	Y
			strate 2	0.01				
392	55432	YOD1	YOD1 deubiquitinase	3.40	10.5	1.1723e-03	Yes	Y
393	57575	PCDH10	protocadherin 10	0.97	2.0	1.1728e-03	No	N
394	2769	GNA15	guanine nucleotide binding protein (G	1.10	2.1	1.1751e-03	No	N
			protein), alpha 15 (Gq class)					
395	2987	GUK1	guanylate kinase 1	1.00	2.0	1.1765e-03	Yes	Y
396	1303	COL12A1	collagen, type XII, alpha 1	-0.70	1.6	1.1803e-03	Yes	Y
397	79822	ARHGAP28	Rho GTPase activating protein 28	-1.07	2.1	1.1919e-03	No	N
398	51122	COMMD2	COMM domain containing 2	-0.61	1.5	1.1921e-03	Yes	N
399	80256	FAM214B	family with sequence similarity 214,	0.92	1.9	1.1997e-03	Yes	N
			member B					
400	80144	FRAS1	Fraser extracellular matrix complex	-1.22	2.3	1.2028e-03	No	N
401	2030	DMTN	domatin actin hinding protoin	9.16	15	1 20620 02	Voc	v
401	2039 5527	DMIN	protoin phoenhataga 6 estalutia sub	2.10	4.0	1.2003e-03	Vec	I
402	0007	I I I I I I I I I I I I I I I I I I I	protein phosphatase 0, catalytic sub-	-0.70	1.1	1.2100e-03	res	1
403	55500	RNPC3	BNA binding region (BNP1 BBM)	0.80	17	1 21200 03	Vos	N
405	00099		containing 3	-0.80	1.1	1.21296-03	165	1
404	26098	EDBF1	erythroid differentiation regulatory fac-	-0.66	16	1 2195e-03	Ves	N
101	20050		tor 1	-0.00	1.0	1.21550-05	105	1
405	64393	ZMAT3	zinc finger matrin-type 3	-1 47	2.8	1 2273e-03	Ves	V
406	56906	THAP10	THAP domain containing 10	-0.70	1.6	1.2276e 00 1 2428e-03	Yes	N
407	395	ARHGAP6	Bho GTPase activating protein 6	-1 15	2.2	1.24200000000000000000000000000000000000	No	N
408	6678	SPARC	secreted protein acidic cysteine-rich	-0.68	1.6	1.2012e00 1 2813e-03	Yes	N
100	0010		(osteonectin)	0.00	110	1.20100 00	100	
409	28984	RGCC	regulator of cell cycle	2.78	6.9	1.2892e-03	Yes	Y
410	4725	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-	-0.75	1.7	1.2918e-03	Yes	Y
			S protein 5, 15kDa (NADH-coenzyme					
411	6670	SD3	Sp3 transcription factor	0.03	1.0	1 20560 03	Vos	N
411	22990	PCNX	pecanex homolog (Drosophila)	-0.95	$\frac{1.3}{2.4}$	1.2950e-05	Vos	
412	1870	E2F2	E2E transcription factor 2	-1.20	$\frac{2.4}{2.0}$	1.3040e-03 1 3057 $e-03$	Vos	
413	27346	TMEM97	transmembrane protein 97	-1.02	$\frac{2.9}{2.1}$	1.3037e-03 1 3103e-03	No	N
414	5971	BELB	v-rel avian reticuloendotheliosis viral	-1.03	2.1	1.3105e-03 1.3156e-03	No	N
410	0071		oncogene homolog B	0.01	1.0	1.51500-05	110	1
416	1633	DCK	deoxycytidine kinase	2.03	4.1	1.3325e-03	Yes	N
417	64847	SPATA20	spermatogenesis associated 20	-0.90	1.9	1.3448e-03	Yes	N
418	54386	TERF2IP	telomeric repeat binding factor 2, inter-	1.24	2.4	1.3507e-03	Yes	Y
			acting protein					
419	51633	OTUD6B	OTU domain containing 6B	-0.94	1.9	1.3508e-03	Yes	N
420	7275	TUB	tubby bipartite transcription factor	-1.27	2.4	1.3814e-03	No	N
421	3674	ITGA2B	integrin, alpha 2b (platelet glycoprotein	0.93	1.9	1.3856e-03	Yes	Y
			IIb of IIb/IIIa complex, antigen CD41)					
422	79768	KATNBL1	katanin p80 subunit B-like 1	-2.16	4.5	1.3862e-03	Yes	Y
423	5552	SRGN	serglycin	1.40	2.6	1.3906e-03	No	N
424	7337	UBE3A	ubiquitin protein ligase E3A	-0.80	1.7	1.3923e-03	Yes	N

			Table 12 – continued from previous page					
425	149076	ZNF362	zinc finger protein 362	-0.76	1.7	1.4102e-03	Yes	N
426	10974	ADIRF	adipogenesis regulatory factor	-1.53	2.9	1.4189e-03	No	N
427	81689	ISCA1	iron-sulfur cluster assembly 1	0.75	1.7	1.4243e-03	Yes	N
428	23635	SSBP2	single-stranded DNA binding protein 2	-0.84	1.8	1.4278e-03	No	N
429	5341	PLEK	pleckstrin	0.93	1.9	1.4285e-03	No	N
430	493856	CISD2	CDGSH iron sulfur domain 2	2.19	4.5	1.4459e-03	Yes	Y
431	79071	ELOVL6	ELOVL fatty acid elongase 6	1.46	2.8	1.4529e-03	Yes	Y
432	6397	SEC14L1	SEC14-like 1 (S. cerevisiae)	1.67	3.2	1.4594e-03	Yes	Y
433	2532	ACKR1	atypical chemokine receptor 1 (Duffy	1.03	2.0	1.4636e-03	No	N
			blood group)					
434	286097	MICU3	mitochondrial calcium uptake family,	-0.73	1.7	1.5481e-03	No	N
			member 3					
435	114876	OSBPL1A	oxysterol binding protein-like 1A	-1.03	2.0	1.5505e-03	No	N
436	3575	IL7R	interleukin 7 receptor	1.08	2.1	1.5605e-03	Yes	N
437	23526	HMHA1	histocompatibility (minor) HA-1	0.85	1.8	1.5619e-03	No	N
438	2357	FPR1	formyl peptide receptor 1	1.12	2.2	1.5788e-03	No	N
439	10189	ALYREF	Aly/REF export factor	-2.03	4.1	1.5886e-03	Yes	Y
440	5730	PTGDS	prostaglandin D2 synthase 21kDa	-0.98	2.0	1.5934e-03	Yes	N
			(brain)					
441	5886	RAD23A	RAD23 homolog A (S. cerevisiae)	0.88	1.8	1.5974e-03	Yes	Y
442	283298	OLFML1	olfactomedin-like 1	-1.14	2.2	1.6104e-03	No	N
443	55717	WDR11	WD repeat domain 11	-1.17	2.3	1.6158e-03	Yes	Y
444	9048	ARTN	artemin	0.78	1.7	1.6171e-03	Yes	Y
445	9173	IL1RL1	interleukin 1 receptor-like 1	3.00	8.0	1.6293e-03	No	N
446	8740	TNFSF14	tumor necrosis factor (ligand) super- family member 14	0.92	1.9	1.6357e-03	Yes	N
447	978	CDA	cytidine deaminase	0.74	1.7	1.6498e-03	Yes	N
448	5594	MAPK1	mitogen-activated protein kinase 1	1.00	2.0	1.6598e-03	Yes	Y
449	51133	KCTD3	potassium channel tetramerization do-	-0.76	1.7	1.6663e-03	No	N
			main containing 3					
450	26230	TIAM2	T-cell lymphoma invasion and metasta-	-0.90	1.9	1.6668e-03	Yes	N
			sis 2					
451	157638	FAM84B	family with sequence similarity 84,	-0.89	1.8	1.6789e-03	No	N
			member B					
452	26586	CKAP2	cytoskeleton associated protein 2	-0.72	1.7	1.6904e-03	Yes	Y
453	123283	TARSL2	threonyl-tRNA synthetase-like 2	-0.83	1.8	1.6920e-03	Yes	N
454	53354	PANK1	pantothenate kinase 1	-0.86	1.8	1.6923e-03	No	N
455	2040	STOM	stomatin	1.01	2.0	1.7001e-03	Yes	N
456	6774	STAT3	signal transducer and activator of tran-	0.85	1.8	1.7007e-03	No	N
			scription 3 (acute-phase response fac-					
		TROCK	tor)		1.0	1 7100 00		
457	23641	LDOC1	leucine zipper, down-regulated in can- cer 1	-0.87	1.8	1.7139e-03	No	N
458	3554	IL1R1	interleukin 1 receptor, type I	1.06	2.1	1.7152e-03	No	N
459	79956	ERMP1	endoplasmic reticulum metallopepti-	-0.91	1.9	1.7182e-03	No	N
			dase 1					
460	6372	CXCL6	chemokine (C-X-C motif) ligand 6	2.79	6.9	1.7275e-03	No	N
461	400916	CHCHD10	coiled-coil-helix-coiled-coil-helix do-	-0.87	1.8	1.7329e-03	No	N
			main containing 10					
462	51218	GLRX5	glutaredoxin 5	1.56	2.9	1.7699e-03	Yes	Y
463	4946	OAZ1	ornithine decarboxylase antizyme 1	1.48	2.8	1.7710e-03	Yes	Y
464	1890	TYMP	thymidine phosphorylase	0.81	1.8	1.7877e-03	No	N

			Table 12 – continued from previous page					
465	54800	KLHL24	kelch-like family member 24	-1.08	2.1	1.8017e-03	No	N
466	8531	YBX3	Y box binding protein 3	1.12	2.2	1.8089e-03	Yes	N
467	56987	BBX	bobby sox homolog (Drosophila)	-1.27	2.4	1.8226e-03	Yes	Y
468	83719	YPEL3	yippee-like 3 (Drosophila)	1.56	2.9	1.8241e-03	Yes	Y
469	2926	GRSF1	G-rich RNA sequence binding factor 1	-0.80	1.7	1.8349e-03	No	N
470	79180	EFHD2	EF-hand domain family, member D2	0.78	1.7	1.8364e-03	No	N
471	415116	PIM3	Pim-3 proto-oncogene, ser-	0.59	1.5	1.8483e-03	No	N
			ine/threonine kinase					
472	7037	TFRC	transferrin receptor	2.27	4.8	1.8493e-03	No	N
473	4116	MAGOH	mago-nashi homolog, proliferation-	-1.05	2.1	1.8502e-03	Yes	N
			associated (Drosophila)					
474	143686	SESN3	sestrin 3	2.58	6.0	1.8619e-03	Yes	Y
475	4660	PPP1R12B	protein phosphatase 1, regulatory sub-	-1.56	2.9	1.8677e-03	Yes	Y
			unit 12B					
476	51393	TRPV2	transient receptor potential cation	1.05	2.1	1.8773e-03	Yes	N
			channel, subfamily V, member 2					
477	9079	LDB2	LIM domain binding 2	-0.98	2.0	1.8799e-03	No	N
478	83696	TRAPPC9	trafficking protein particle complex 9	1.16	2.2	1.8818e-03	Yes	Y
479	57684	ZBTB26	zinc finger and BTB domain containing	-0.67	1.6	1.8819e-03	Yes	N
	0.00-		26					
480	100873954	SNRK-AS1	SNRK antisense RNA 1	-0.64	1.6	1.8960e-03	Yes	N
481	219348	PLAC9	placenta-specific 9	-1.03	2.0	1.8962e-03	Yes	Y
482	91151	TIGD7	tigger transposable element derived 7	-0.80	1.7	1.9070e-03	Yes	N
483	54602	NDFIP2	Nedd4 family interacting protein 2	-0.65	1.6	1.0070e-03	Yes	Y
484	79667	KLF3-AS1	KLF3 antisense BNA 1	-0.93	1.0	1.0010003 1.9290e-03	Ves	N
485	57703	CWC22	CWC22 spliceosome-associated protein	-0.66	1.6	1.02000000 1.0202e-03	Ves	N
486	79701	OGFOD3	2-oxoglutarate and iron-dependent oxy-	-1.06	2.1	1.9202e 09	Ves	V
100	10101		genase domain containing 3	1.00	2.1	1.550000 00	105	-
487	4792	NFKBIA	nuclear factor of kappa light polypep-	0.83	1.8	1 9368e-03	No	N
101	1102		tide gene enhancer in B-cells inhibitor	0.00	1.0	1.550000 00	110	
			alpha					
488	1475	CSTA	cystatin A (stefin A)	1 55	29	1 9387e-03	No	N
489	3848	KBT1	keratin 1	3.30	9.8	1.99016-03	Ves	V
490	997	CDC34	cell division cycle 34	1.04	2.1	1.9119e-03	Ves	V
400	1879	EBF1	early B-cell factor 1	-0.87	1.1	1.94100-03 1.9616e-03	Vos	V
402	701	BUB1B	BUB1 mitotic checkpoint sor	-0.01	1.0	1.90100-03	Vos	V
432	701	DODID	ine/threenine kinase B	-0.00	1.0	1.30000-03	105	1
493	10181	RBM5	BNA binding motif protein 5	-1 14	2.2	1 9841e-03	Ves	V
495	/701	NFKB2	nuclear factor of kappa light polypep-	1.14	2.2	2.0048e-03	No	I N
434	4131	NI ND2	tide gene enhancer in B-cells 2	1.20	2.4	2.00400-05	110	1,
			(p49/p100)					
495	6535	SLC6A8	solute carrier family 6 (neurotransmit-	1 49	28	2.0366e-03	Ves	N
450	0000	510010	ter transporter) member 8	1.40	2.0	2.05000-05	105	1
496	64098	PARVG	parvin gamma	0.71	1.6	2.0638e-03	No	N
490	9584	RBM30	BNA binding motif protein 39	_0.02	1.0	2.00500-05 2.0753e-03	Vos	V
408	5586	PKN9	nrotein kinase N2	-0.32	1.9	2.01000-00	Ves	I N
400	3385	ICAM2	intercellular adhesion moleculo 3	0.04	2.0	2.00120-03	No	I N
500	10000	BUNDC2A	BUN domain containing 3A	0.99	2.0 1 2	2.10340-03	Vec	
500	0897	CINCI	CINS complex suburit 1 (Defi be		4.0	2.10400-00	Vec	I N
106	9091	GINSI	molog)	-0.92	1.9	2.1214e-03	res	
502	162466	PHOSPHO1	nhosphatasa ornhan 1	1 / 2	27	2 12800 02	Vog	v
502	689	BSC	basigin (Ok blood group)	1.40	2.1 2.6	2.12090-03	Vog	
000	002	DOG	Dasigin (Ok Diood group)	1.00	2.0	2.10000-00	162	1

			Table 12 – continued from previous page					
504	64426	SUDS3	suppressor of defective silencing 3 ho- molog (S. cerevisiae)	-0.70	1.6	2.1348e-03	No	N
505	25909	AHCTF1	AT hook containing transcription factor 1	-0.66	1.6	2.1465e-03	Yes	N
506	83852	SETDB2	SET domain, bifurcated 2	-0.71	1.6	2.1534e-03	Yes	N
507	283991	UBALD2	UBA-like domain containing 2	0.82	1.8	2.1814e-03	Yes	N
508	112770	C1orf85	chromosome 1 open reading frame 85	-0.92	1.9	2.1854e-03	No	N
509	2534	FYN	FYN proto-oncogene, Src family tyro-	-1.00	2.0	2.1938e-03	Yes	N
			sine kinase					
510	51312	SLC25A37	solute carrier family 25 (mitochondrial	3.45	10.9	2.2079e-03	No	N
			iron transporter), member 37					
511	79710	MORC4	MORC family CW-type zinc finger 4	-0.82	1.8	2.2195e-03	No	Ν
512	83543	AIF1L	allograft inflammatory factor 1-like	-1.23	2.4	2.2245e-03	No	Ν
513	8993	PGLYRP1	peptidoglycan recognition protein 1	0.78	1.7	2.2333e-03	Yes	N
514	57685	CACHD1	cache domain containing 1	-0.87	1.8	2.2340e-03	Yes	Y
515	1669	DEFA4	defensin, alpha 4, corticostatin	0.80	1.7	2.2472e-03	Yes	Y
516	57541	ZNF398	zinc finger protein 398	-0.71	1.6	2.2607e-03	Yes	N
517	8548	BLZF1	basic leucine zipper nuclear factor 1	-0.63	1.5	2.2684e-03	Yes	N
518	57545	CC2D2A	coiled-coil and C2 domain containing 2A	-0.80	1.7	2.2727e-03	No	N
519	1908	EDN3	endothelin 3	-1.72	3.3	2.2898e-03	No	Ν
520	3643	INSR	insulin receptor	-0.72	1.6	2.3250e-03	Yes	N
521	57188	ADAMTSL3	ADAMTS-like 3	-0.88	1.8	2.3275e-03	No	N
522	79682	CENPU	centromere protein U	-0.86	1.8	2.3320e-03	Yes	N
523	64333	ARHGAP9	Rho GTPase activating protein 9	0.91	1.9	2.3389e-03	No	N
524	1629	DBT	dihydrolipoamide branched chain transacylase E2	-0.72	1.6	2.3587e-03	Yes	N
525	84131	CEP78	centrosomal protein 78kDa	-0.97	2.0	2.3629e-03	No	N
526	8924	HERC2	HECT and RLD domain containing E3	-0.75	1.7	2.3796e-03	Yes	N
			ubiquitin protein ligase 2					
527	4067	LYN	LYN proto-oncogene, Src family tyro-	1.40	2.6	2.3962e-03	No	N
500	170001		sine kinase	1.1.0	0.0	0.4047.09	NT	N
528	170691	ADAMISI	ADAM metallopeptidase with throm-	-1.10	2.2	2.4047e-03	INO	IN
500	0061	ECED9	bospondin type 1 motil, 17	1 10	0.0	9.4071 - 02	N.	N
529	2201	FGFK3 DCI 11A	D coll CLL /breach area 11A (sing finger)	-1.12	2.2	2.4071e-03	NO Vog	
550	00000	DOLIIA	b-cen CLL/lymphoma 11A (zinc inger	-0.98	2.0	2.4190e-05	res	1
591	7000	TMDIM6	transmomhrana PAX inhibitar matif	0.77	17	$2.4271_{0.02}$	Voc	N
001	7009		containing 6	0.77	1.1	2.42716-03	ies	1
522	527	ATD6V0C	ATPage H transporting lugogomal	1.20	24	2 44260 02	Voc	v
002	521	AITOVOC	All ase, $\Pi +$ transporting, hysosoniai 16kDa V0 subunit c	1.29	2.4	2.44500-05	Tes	1
533	4050	LTB	lymphotoxin beta (TNF superfamily	1.03	2.0	2.4515e-03	No	N
000	4000		member 3)	1.00	2.0	2.40100-00	110	1
534	9411	ABHGAP29	Bho GTPase activating protein 29	-0.92	19	2.4673e-03	Ves	N
535	1381	CRABP1	cellular retinoic acid binding protein 1	-0.92	1.9	2.4079C-03	Ves	V
536	7512	XPNPEP2	X-prolyl aminopentidase (aminopenti-	1.24	2.4	2.4025e-03	Ves	N
000	1014		dase P) 2. membrane-bound	1.21		2.10000-00	100	
537	56994	CHPT1	choline phosphotransferase 1	1 47	2.8	2 5168e-03	Yes	
538	83442	SH3BGRL3	SH3 domain binding glutamate-rich	0.76	17	2.5293e-03	No	N
	00112		protein like 3		1.1	2.02000-00	110	
539	92	ACVR2A	activin A receptor, type IIA	-1.07	2.1	2.5365e-03	Yes	Y
			······································					

		Tuble 12 continued nom previous puge					
5045	FURIN	furin (paired basic amino acid cleaving enzyme)	0.71	1.6	2.5388e-03	Yes	N
29761	USP25	ubiquitin specific peptidase 25	-1.12	2.2	2.5562e-03	No	Ν
54518	APBB1IP	amyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein	0.78	1.7	2.5578e-03	No	N
28639	TRBC1	T cell receptor beta constant 1	1.26	2.4	2.5584e-03	Yes	Y
23189	KANK1	KN motif and ankyrin repeat domains 1	-0.94	1.9	2.5859e-03	No	N
7552	ZNF711	zinc finger protein 711	-0.90	1.9	2.5892e-03	No	Ν
10966	RAB40B	RAB40B, member RAS oncogene fam- ily	-0.95	1.9	2.5893e-03	No	N
4353	MPO	myeloperoxidase	0.74	1.7	2.6159e-03	Yes	N
6355	CCL8	chemokine (C-C motif) ligand 8	0.91	1.9	2.6177e-03	No	N
54462	CCSER2	coiled-coil serine-rich protein 2	-0.70	1.6	2.6358e-03	Yes	N
3176	HNMT	histamine N-methyltransferase	-0.97	2.0	2.6380e-03	No	N
28968	SLC6A16	solute carrier family 6, member 16	-0.86	1.8	2.6657e-03	Yes	Y
3050	HBZ	hemoglobin, zeta	4.12	17.4	2.6724e-03	Yes	Y
7072	TIA1	TIA1 cytotoxic granule-associated RNA binding protein	-0.91	1.9	2.6739e-03	Yes	N
7351	UCP2	uncoupling protein 2 (mitochondrial, proton carrier)	2.67	6.4	2.6772e-03	No	N
79930	DOK3	docking protein 3	0.96	1.9	2.6795e-03	No	Ν
6556	SLC11A1	solute carrier family 11 (proton-coupled divalent metal ion transporter), mem- ber 1	1.03	2.0	2.6930e-03	No	N
10929	SRSF8	serine/arginine-rich splicing factor 8	0.84	1.8	2.6983e-03	Yes	Y
54819	ZCCHC10	zinc finger, CCHC domain containing 10	-0.76	1.7	2.7064e-03	Yes	N
9843	HEPH	hephaestin	-0.90	1.9	2.7162e-03	Yes	Ν
55727	BTBD7	BTB (POZ) domain containing 7	-0.90	1.9	2.7224e-03	Yes	N
26046	LTN1	listerin E3 ubiquitin protein ligase 1	-1.27	2.4	2.7273e-03	Yes	Y
91300	R3HDM4	R3H domain containing 4	2.49	5.6	2.7515e-03	Yes	Y
84168	ANTXR1	anthrax toxin receptor 1	-0.65	1.6	2.7533e-03	Yes	Y
115123	MARCH3	membrane-associated ring finger (C3HC4) 3, E3 ubiquitin protein ligase	0.86	1.8	2.7619e-03	No	N
643837	LINC01128	long intergenic non-protein coding RNA 1128	-0.85	1.8	2.7687e-03	Yes	N
26037	SIPA1L1	signal-induced proliferation-associated 1 like 1	-0.84	1.8	2.8203e-03	No	N
	5045         29761         54518         28639         23189         7552         10966         4353         6355         54462         3176         28968         3050         7072         7351         79930         6556         10929         54819         9843         55727         26046         91300         84168         115123         643837         26037	5045         FURIN           29761         USP25           54518         APBB1IP           28639         TRBC1           23189         KANK1           7552         ZNF711           10966         RAB40B           4353         MPO           6355         CCL8           54462         CCSER2           3176         HNMT           28968         SLC6A16           3050         HBZ           7072         TIA1           7351         UCP2           79930         DOK3           6556         SLC11A1           10929         SRSF8           54819         ZCCHC10           9843         HEPH           55727         BTBD7           26046         LTN1           91300         R3HDM4           84168         ANTXR1           115123         MARCH3           643837         LINC01128           26037         SIPA1L1	5045       FURIN       furin (paired basic amino acid cleaving enzyme)         29761       USP25       ubiquitin specific peptidase 25         54518       APBB1IP       amyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein         28639       TRBC1       T cell receptor beta constant 1         23189       KANK1       KN motif and ankyrin repeat domains 1         7552       ZNF711       zinc finger protein 711         10966       RAB40B       RAB40B, member RAS oncogene fam- ily         4353       MPO       myeloperoxidase         6355       CCL8       chemokine (C-C motif) ligand 8         54462       CCSER2       cold-coil serine-rich protein 2         3176       HNMT       histamine N-methyltransferase         28968       SLC6A16       solute carrier family 6, member 16         3050       HBZ       hemoglobin, zeta         7072       TIA1       TIA1       cytotoxic granule-associated RNA binding protein         7351       UCP2       uncoupling protein 2 (mitochondrial, proton carrier)         79930       DOK3       docking protein 3         6556       SLC11A1       solute carrier family 11 (proton-coupled divalent metal ion transporter), mem- ber 1         100929       SRSF8       serin	5045FURIN FURINfurin (paired basic amino acid cleaving enzyme)0.7129761USP25ubiquitin specific peptidase 25-1.1254518APBB1IPamyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein0.7828639TRBC1T cell receptor beta constant 11.2623189KANK1KN motif and ankyrin repeat domains 1-0.9010966RAB40BRAB40B, member RAS oncogene fam- ily0.744353MPOmyeloperoxidase0.746355CCL8chemokine (C-C motif) ligand 80.9154462CCSER2coiled-coil serine-rich protein 2-0.703176HNMThistamine N-methyltransferase-0.9728968SLC6A16solute carrier family 6, member 16-0.863050HBZhemoglobin, zeta4.127072TIA1TIA1cytoxic granule-associated divalent metal ion transporter), mem- ber 1-0.9010929SRSF8serine/arginine-rich splicing factor 80.8454819ZCCHC10zinc finger, CCHC domain containing 10-0.7055727BTBD7BTB (POZ) domain containing 7-0.9055727BTBD7BTB (POZ) domain containing 7-0.9055727BTBD7BTB (POZ) domain containing 42.4984168ANTXR1anthrax toxin receptor 1-0.65115123MARCH3membrane-associated ring finger (C3HC4) 3, E3 ubiquitin protein ligase-0.86643837LINC01128	5045         FURIN         furin (paired basic amino acid cleaving enzyme)         0.71         1.6           29761         USP25         ubiquitin specific peptidase 25         -1.12         2.2           54518         APBB1IP         amyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein         0.78         1.7           28639         TRBC1         T cell receptor beta constant 1         1.26         2.4           23189         KANK1         KN motif and ankyrin repeat domains         -0.94         1.9           7552         ZNF711         zinc finger protein 711         -0.90         1.9           10966         RAB40B         RAB40B, member RAS oncogene fam- ily         -0.95         1.9           4353         MPO         myeloperoxidase         0.74         1.7           6355         CCL8         chemokine (C-C motif) ligand 8         0.91         1.9           54462         CCSER2         coiled-coil serine-rich protein 2         -0.70         1.6           3176         HNT         histamine N-methyltransferase         -0.97         2.0           28968         SLC6A16         solute carrier family 6, member 16         -0.86         1.8           3050         HBZ         hemoglobin, zeta <td< td=""><td>5045         FURIN         furin (paired basic amino acid cleaving enzyme)         0.71         1.6         2.5388e.03           29761         USP25         ubiquitin specific peptidase 25         -1.12         2.2         2.5562e.03           54518         APBB1IP         amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein         0.78         1.7         2.5578e.03           28639         TRBC1         T cell receptor beta constant 1         1.26         2.4         2.5584e.03           23189         KANK1         KN motif and ankyrin repeat domains         -0.94         1.9         2.5892e.03           10         nin finger protein 711         -0.90         1.9         2.5892e.03           10966         RAB40B         RAB40B, member RAS oncogene fam- ily         -0.95         1.9         2.5893e.03           13         1.7         2.6159e.03         0.74         1.7         2.6159e.03           3176         HNMT         histamine N-methyltransferase         -0.97         1.6         2.6380e.03           3050         HBZ         hemoglobin, zeta         4.12         1.74         2.6724e.03           7072         TIA1         TIA1 cytotoxic granule-associated RNA binding protein 3         0.96         1.9         2.6795e.03</td><td>5045         FURIN enzyme         furin (paired basic amino acid cleaving enzyme)         0.71         1.6         2.5388e-03         Yes           29761         USP25         ubiquitin specific peptidase 25         -1.12         2.2         2.5562e-03         No           54518         APBB1IP         amyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein         0.78         1.7         2.5578e-03         No           28639         TRBC1         T cell receptor beta constant 1         1.26         2.4         2.5584e-03         Yes           23189         KANK1         KN motif and ankyrin repeat domains 0.99         -0.90         1.9         2.5892e-03         No           1         -0.00         RAB40B         RAB40B, member RAS oncogene fam- ily         -0.95         1.9         2.5893e-03         No           4353         MPO         myeloperoxidase         0.74         1.7         2.6159e-03         Yes           54462         CCSER2         coiled-coil serine-rich protein 2         -0.70         1.6         2.638e-03         Yes           3050         HBZ         hemoglobin, zeta         -0.97         2.0         2.6630e-03         No           7072         TIA1         TA1         cylocoxic granule-associa</td></td<>	5045         FURIN         furin (paired basic amino acid cleaving enzyme)         0.71         1.6         2.5388e.03           29761         USP25         ubiquitin specific peptidase 25         -1.12         2.2         2.5562e.03           54518         APBB1IP         amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein         0.78         1.7         2.5578e.03           28639         TRBC1         T cell receptor beta constant 1         1.26         2.4         2.5584e.03           23189         KANK1         KN motif and ankyrin repeat domains         -0.94         1.9         2.5892e.03           10         nin finger protein 711         -0.90         1.9         2.5892e.03           10966         RAB40B         RAB40B, member RAS oncogene fam- ily         -0.95         1.9         2.5893e.03           13         1.7         2.6159e.03         0.74         1.7         2.6159e.03           3176         HNMT         histamine N-methyltransferase         -0.97         1.6         2.6380e.03           3050         HBZ         hemoglobin, zeta         4.12         1.74         2.6724e.03           7072         TIA1         TIA1 cytotoxic granule-associated RNA binding protein 3         0.96         1.9         2.6795e.03	5045         FURIN enzyme         furin (paired basic amino acid cleaving enzyme)         0.71         1.6         2.5388e-03         Yes           29761         USP25         ubiquitin specific peptidase 25         -1.12         2.2         2.5562e-03         No           54518         APBB1IP         amyloid beta (A4) precursor protein- binding, family B, member 1 interact- ing protein         0.78         1.7         2.5578e-03         No           28639         TRBC1         T cell receptor beta constant 1         1.26         2.4         2.5584e-03         Yes           23189         KANK1         KN motif and ankyrin repeat domains 0.99         -0.90         1.9         2.5892e-03         No           1         -0.00         RAB40B         RAB40B, member RAS oncogene fam- ily         -0.95         1.9         2.5893e-03         No           4353         MPO         myeloperoxidase         0.74         1.7         2.6159e-03         Yes           54462         CCSER2         coiled-coil serine-rich protein 2         -0.70         1.6         2.638e-03         Yes           3050         HBZ         hemoglobin, zeta         -0.97         2.0         2.6630e-03         No           7072         TIA1         TA1         cylocoxic granule-associa

Table 12 - continued from previous page

## 3.9 Session Information

- > toLatex(sessionInfo())
- R version 3.1.3 (2015-03-09), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF8, LC_NUMERIC=C, LC_TIME=en_US.UTF8, LC_COLLATE=en_US.UTF8, LC_MONETARY=en_US.UTF8, LC_MESSAGES=en_US.UTF8, LC_PAPER=en_US.UTF8, LC_NAME=en_US.UTF8, LC_ADDRESS=en_US.UTF8, LC_TELEPHONE=en_US.UTF8, LC_MEASUREMENT=en_US.UTF8, LC_IDENTIFICATION=en_US.UTF8
- Base packages: base, datasets, graphics, grDevices, grid, methods, parallel, stats, stats4, utils

- Other packages: annotate 1.44.0, AnnotationDbi 1.28.2, Biobase 2.26.0, BiocGenerics 0.12.1, BiocParallel 1.0.3, DBI 0.3.1, Formula 1.2-1, frma 1.18.0, genefilter 1.48.1, geneplotter 1.44.0, GenomeInfoDb 1.2.5, ggplot2 1.0.1, hgu133plus2.db 3.0.0, Hmisc 3.16-0, IRanges 2.0.1, lattice 0.20-31, limma 3.22.7, mgcv 1.8-6, nlme 3.1-120, org.Hs.eg.db 3.0.0, plotrix 3.5-11, RColorBrewer 1.1-2, rJava 0.9-6, RSQLite 1.0.0, S4Vectors 0.4.0, survival 2.38-1, sva 3.12.0, xlsx 0.5.7, xlsxjars 0.6.1, XML 3.98-1.1, xtable 1.7-4
- Loaded via a namespace (and not attached): acepack 1.3-3.3, affxparser 1.38.0, affy 1.44.0, affyio 1.34.0, base64enc 0.1-2, BatchJobs 1.6, BBmisc 1.9, BiocInstaller 1.16.4, Biostrings 2.34.1, bit 1.1-12, brew 1.0-6, checkmate 1.5.2, cluster 2.0.1, codetools 0.2-11, colorspace 1.2-6, digest 0.6.8, fail 1.2, ff 2.2-13, foreach 1.4.2, foreign 0.8-63, GenomicRanges 1.18.4, gridExtra 0.9.1, gtable 0.1.2, iterators 1.0.7, latticeExtra 0.6-26, MASS 7.3-40, Matrix 1.2-0, munsell 0.4.2, nnet 7.3-9, oligo 1.30.0, oligoClasses 1.28.0, plyr 1.8.2, preprocessCore 1.28.0, proto 0.3-10, Rcpp 0.11.6, reshape2 1.4.1, rpart 4.1-9, scales 0.2.4, sendmailR 1.2-1, splines 3.1.3, stringr 0.6.2, tools 3.1.3, XVector 0.6.0, zlibbioc 1.12.0

# 4 Functional analysis of differentially expressed genes

# 4.1 Enrichment of DE genes in Gene Ontology (GO) terms

We perform a functional enrichment analysis with Gene Ontology (GO) among the enes forming the list of 1097 DE genes. We do it, however, separately for up-regulated and down-regulated genes because we expect that these two categories of DE genes are involved in very different molecular processes under the FIR affected and nonaffected infants.

For the purpose of filtering by variability (IQR) during this analysis and plotting a heatmap of gene expression profiles for the DE genes we are going to transform gene expression values to remove biological and non-biological variation unrelated to FIR.

Throughout the two GO enrichment analyses, we will use the following p-value cutoff for the conditional hypergeometric test which removes overlapping genes in parent GO terms from child GO terms meeting this p-value cutoff, prior to their test (10).

```
> goAnalysisCondPvalueCutoff <- 0.01</pre>
```

Due to the large number of GO gene sets that may meet this cutoff we will follow a conservative approach and correct the *p*-values by FDR, selecting those with FDR < 10% and further restrict the selected gene sets to those with OR> 1.5. Prior to the multiple testing correction we perform a non-specific filtering step consisting of discarding gene sets with less than 5 and more than 300 genes annotated to them from the gene universe. We also filter out those gene sets whose average IQR across its genes, is below the 90% of a simulated distribution of average IQR values calculated from random gene sets sampled uniformly at random with matching gene set size. The enriched GO terms for up-regulated genes can be found in Table 13.

The gene universe is formed by all the genes either with up or down fold changes among those meeting the functional non-specific filter (20155 genes), and depending on whether the enrichment analysis is for up or down regulated genes.

```
> maskUp <- ttAll$logFC > 0
> DEgenesUp <- intersect(ttAll[maskUp, "ID"], DEgenes)
> length(DEgenesUp)
[1] 592
> gUniverse <- ttAll[maskUp, "ID"]
> length(gUniverse)
```

```
[1] 10868
> GOparams <- new("GOHyperGParams", geneIds=DEgenesUp, universeGeneIds=gUniverse,
                  annotation="org.Hs.eg.db", ontology="BP",
                  pvalueCutoff=goAnalysisCondPvalueCutoff, conditional=TRUE,
                  testDirection="over")
> cache(hgOverGOBPdeGenesUp <- hyperGTest2(GOparams, minSizeCutoff=5,</pre>
                                            maxSizeCutoff=300, orCutoff=1.5),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> hgOverGOBPdeGenesUp
Gene to GO BP Conditional test for over-representation
5790 GO BP ids tested (716 have p < 0.01)
Selected gene set size: 562
   Gene universe size: 7703
    Annotation package: org.Hs.eg
> IQRs <- apply(cleanExps[gUniverse, ], 1, IQR)</pre>
> cache(reportOverGOBPdeGenesUp <- GOreport(hgOverGOBPdeGenesUp, minSize=5, maxSize=300,
                                             minCount=5, minOddsRatio=1.5,
                                             featureFilterValues=IQRs,
                                             ff.R=1000, ff.prob=0.90, maxReported=Inf,
                                             p.value=0.1, p.adjust.method="fdr"),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> dim(reportOverGOBPdeGenesUp)
[1] 542 10
```

**Table 13.** Gene Ontology (GO) enrichment (biological process) of upregulated genes called differentially expressed between FIR and nonFIR affected infants at FDR < 1% and with a minimum 1.5-fold change. Column "GeneSyms" contains the genes enriching the corresponding GO term.

Term	OddsRatio	ExpCount	Count	Size	GeneSyms
neutrophil extrava-	Inf	0.36	5	5	ADAM8, AMICA1, PIK3CD,
sation					PIK3CG, TREM1
leukocyte mi-	77.05	0.51	6	7	ADAM8, ITGAM, PPBP,
gration involved					S100A8, $S100A9$ , $SELE$
in inflammatory					
response					
leukocyte aggrega-	51.55	0.73	8	10	SEMA4D, HAS2, IL1B, RAC2,
tion					S100A8, S100A9, STK10, CD44
neutrophil activa-	45.50	0.65	7	9	CD300A, CXCL8, CXCR2,
tion					PRKCD, PREX1, CCL5,
					CXCR4
cellular response to	30.01	0.73	7	10	MT1E, MT1F, MT1G, MT1H,
zinc ion					MT1M, MT1X, MT2A
response to pepti-	22.50	0.80	7	11	IRAK3, IL6, IRAK1, MYD88,
doglycan					NOD2, TLR2, C5AR1
mononuclear cell	21.36	0.58	5	8	LGALS3, CCL2, CCL5, THBS1,
migration					C3AR1
negative regulation	19.25	0.73	6	10	IRAK3, JAK3, ARRB2, NOD2,
of interleukin-12					THBS1, TLR2
production					
respiratory burst	17.26	1.02	8	14	CD24, CD52, CYBA, CYBB,
					CD55, $NCF2$ , $RAC2$ , $SLC11A1$
positive regula-	16.02	0.66	5	9	CCR1, AIF1, SERPINE1,
tion of monocyte					CCL5, CCR2
chemotaxis					

	Tuble	10 0011111		levious	Pu90
neutrophil chemo- taxis	16.00	3.06	23	42	AMICA1, CSF3R, FCER1G, CXCL3, IL1B, CXCL8, CXCR2, ITGAM, ITGB2, LGALS3, PIK3CD, PIK3CG, TREM1, PREX1, S100A8, S100A9, S100A12, CCL2, NOD2, SPP1, SYK_C3AB1_C5AB1
positive regulation of acute inflamma-	15.82	1.46	11	20	ADAM8, FCER1G, ALOX5AP, IL1B, IL6, IL6ST, OSM,
positive regulation of smooth muscle cell migration	15.40	0.80	6	11	LPAR1, AIF1, ITGA2, RETN, CCL5, NRP1
defense response to protozoan	15.40	0.80	6	11	IL4R, IL6, BCL3, CLEC7A, SLC11A1, CD37
granulocyte migra- tion	14.53	3.48	25	48	AMICA1, CSF3R, FCER1G, CXCL3, IL1B, CXCL8, CXCR2, ITGAM, ITGB2, PIK3CD, PIK3CG, TREM1, PREX1, RAC2, S100A8, S100A9, S100A12, CCL2, NOD2, SPP1, SYK, THBS1, C3AR1, C5AR1, VEGFA
positive regulation vascular endothelial growth factor pro- duction	14.36	1.39	10	19	HPSE, CYP1B1, SULF1, HIF1A, IL1A, IL1B, IL6ST, PTGS2, C3, C3AR1
negative regulation of peptidyl-tyrosine phosphorylation	12.90	1.31	9	18	SEMA4D, CD300A, ERRFI1, PRKCD, PTPN2, PTPN6, SAMSN1, SOCS1, MVP
macrophage differ- entiation	12.89	0.73	5	10	CSF1R, ITGAM, MMP9, SPI1, VEGFA
phagocytosis, engulfment	12.88	1.17	8	16	CD300A, ABCA1, AIF1, FCER1G, ITGA2, BIN2, THBS1, CD36
leukocyte chemo- taxis	12.85	2.62	18	37	ADAM8, CORO1A, AMICA1, CSF3R, FCER1G, CXCL3, IL1B, ITGAM, ITGB2, PF4, PIK3CD, TREM1, PREX1, S100A8, S100A9, SPP1, SYK, C5AR1
ovulation	12.81	0.73	5	10	IL4R, MMP19, PLAT, PTGS2, ADAMTS1
cellular response to cadmium ion	12.81	0.73	5	10	MT1E, MT1F, MT1G, MT1H, MT1X
dendritic cell chemotaxis	11.00	0.95	6	13	CCR1, CXCR2, PIK3CG, CCL5, CCR2, CXCR4
eosinophil migra- tion	10.67	0.80	5	11	ADAM8, CD300A, LGALS3, PTGER4, CCL5
monocyte chemo- taxis	10.08	1.16	7	16	FLT1, GREM1, IL6, LGALS3, LYN, S100A12, CCL2
					Table 13 – Continued on next page

#### Table 13 – continued from previous page

negative regula- tion of cytokine- mediated signaling pathway	9.99	1.17	7	16	IRAK3, IL1RN, IL6ST, PTPN2, PTPRC, ROBO1, CCL5
negative regulation of insulin receptor signaling pathway	9.99	1.17	7	16	IL1B, PID1, PRKCD, PTPN2, PTPRE, SOCS1, SOCS3
production of molecular me- diator involved in inflammatory response	9.67	1.53	9	21	FCER1G, IL17RA, ALOX5, ALOX5AP, IL4R, LYN, SER- PINE1, SLC7A2, SYK
decidualization	9.62	1.02	6	14	JUNB, LIF, PTGS2, SPP1, STC1, VDR
regulation of lipopolysaccharide- mediated signaling pathway	9.15	0.88	5	12	TRIB1, CD55, LY96, LTF, TN- FAIP3
chemokine metabolic pro- cess	9.15	0.88	5	12	IL1B, IL6, MYD88, TREM1, WNT5A
positive regulation of leukocyte apop- totic process	9.15	0.88	5	12	ADAM8, JAK3, LYN, CCL5, WNT5A
muscle cell migra- tion	9.14	2.12	12	29	TRIB1, LPAR1, AIF1, IGFBP3, ITGA2, SERPINE1, PLAT, PLAU, RETN, CCL5, SORL1, NRP1
chronic inflamma- tory response	8.99	1.24	7	17	IL1RN, S100A8, S100A9, CCL5, THBS1, VCAM1, PTGES
embryo implanta- tion	8.89	1.97	11	27	FBLN1, IL1B, LIF, MMP9, PRLR, PTGS2, SPP1, STC1, TGFBR2, TIMP1, VMP1
positive regulation of phagocytosis	8.61	1.82	10	25	DOCK2, FCER1G, PYCARD, ITGA2, PTX3, CCL2, NOD2, SLC11A1, C3, CD36
JAK-STAT cascade involved in growth hormone signaling pathway	8.58	1.46	8	20	JAK3, LYN, PRLR, PTPN6, STAT3, SOCS1, IRS2, SOCS3
myeloid leukocyte activation	8.54	2.72	15	39	AIF1, IL4R, CXCL8, CXCR2, MT1G, PRKCD, PREX1, CCL5, SLC7A2, SLC11A1, THBS1, WNT5A, CXCR4, ZC3H12A, IL1RL1
lipopolysaccharide- mediated signaling pathway	8.35	1.67	9	23	HCK, IL1B, IRAK1, LYN, MYD88, NFKBIA, CCL2, CCL5, TLR2
negative regulation of chemotaxis	8.18	1.31	7	18	AIF1, GREM1, PTPN2, ROBO1, CCL2, WNT5A, NRP1
positive regulation of T cell migration	8.18	1.31	7	18	ADAM8, AIF1, PYCARD, CCL5, CCL20, CCR2, WNT5A

Table 13 – continued from previous page

		20 00			P~0~
positive regulation of release of cy- tochrome c from mitochondria	8.00	0.95	5	13	PPIF, PYCARD, ARRB2, BID, BNIP3
regulation of reg- ulated secretory pathway	7.92	1.53	8	21	CD300A, FCER1G, FGR, LYN, STXBP2, SYK, CCR2, PRAM1
mast cell activation involved in immune response	7.73	1.75	9	24	CD300A, FCER1G, FGR, LYN, PIK3CD, PIK3CG, STXBP2, SYK, LAT2
cell chemotaxis	7.73	2.88	15	42	LPAR1, CXCL1, CXCL2, RHOG, ARRB2, BIN2, PDGFRA, PPBP, CCL8, CCL20, CXCL6, CXCL5, VCAM1, NRP1, DOCK4
substrate- dependent cell migration	7.70	1.17	6	16	ADAM8, ITGA2, PTPRC, ROBO1, NRP2, NRP1
negative regulation of toll-like receptor signaling pathway	7.70	1.17	6	16	IRAK3, PIK3AP1, LYN, ARRB2, NOD2, TNFAIP3
regulation of mast cell degranulation	7.70	1.17	6	16	CD300A, FCER1G, FGR, LYN, STXBP2, SYK
regulation of interferon-gamma- mediated signaling pathway	7.70	1.17	6	16	IFNGR1, IFNGR2, PTPN2, PTPN6, SOCS1, SOCS3
regulation of lym- phocyte migration	7.59	1.97	10	27	ADAM8, AIF1, PYCARD, CCL2, CCL4, CCL5, CCL20, STK10, CCR2, WNT5A
positive regulation of inflammatory re- sponse	7.41	2.80	14	39	TNIP1, CTSS, ITGA2, SER- PINE1, PLA2G2A, PTGER4, S100A8, S100A9, S100A12, TGM2, TLR2, CCR2, WNT5A, IL1RL1
mast cell mediated immunity	7.25	1.82	9	25	CD300A, FCER1G, FGR, LYN, PIK3CD, PIK3CG, STXBP2, SYK, LAT2
positive regulation of tumor necrosis factor production	7.25	1.82	9	25	FCER1G, PYCARD, MYD88, PF4, SASH3, NOD2, TLR2, CD14, CD36
leukocyte degranu- lation	7.22	2.03	10	28	CD300A, FCER1G, FGR, HCK, LYN, PIK3CD, PIK3CG, RAB27A, CCR2, LAT2
negative regulation of adaptive immune response based on somatic recombina- tion of immune re- ceptors built from immunoglobulin su- perfamily domains	7.11	1.02	5	14	PTPN6, PTPRC, C10orf54, NOD2, IL1RL1

# Table 13 - continued from previous page

		20 00	54 e p		P~8~
response to is- chemia	7.11	1.02	5	14	PPIF, RCAN1, PANX1, MAP3K5, CPEB4
T cell chemotaxis	7.11	1.02	5	14	PIK3CD, PIK3CG, CCL5, CCR2, WNT5A
positive regulation of lipid storage	7.11	1.02	5	14	HILPDA, NFKB1, C3, ZC3H12A, CD36
response to hyper-	7.11	1.02	5	14	CDKN1A, PDPN, NCF2, BNIP3 SOD2
positive regulation of smooth muscle cell proliferation	7.11	2.26	11	31	HBEGF, AIF1, IL6, IRAK1, ITGA2, MYD88, RETN, PTGS2, CCL5, TGFBR2,
positive regulation of epithelial cell mi- gration	7.06	1.23	6	17	TGM2 CTSH, HBEGF, HIF1A, ITGA2, MMP9, TGFBR2
superoxide anion generation	6.99	1.24	6	17	CYBA, CYBB, NCF2, PRKCD, SOD2, SYK
fibrinolysis	6.92	1.46	7	20	FAP, SERPINE1, SERPINB2, PLAT, PLAU, PLAUR, THBS1
positive regu- lation of nitric oxide biosynthetic process	6.92	1.46	7	20	ICAM1, IL1B, IL6, PTGS2, PTX3, SOD2, TLR2
regulation of mast cell activation	6.86	1.68	8	23	CD300A, FCER1G, FGR, LYN, PLSCR1, PTPRE, STXBP2, SYK
acute-phase re- sponse	6.47	1.74	8	24	CEBPB, SERPINA3, HP, IL6, SERPINA1, PLSCR1, STAT3, CD163
cellular response to biotic stimulus	6.46	6.93	31	95	TRIB1, LILRB2, CSF3, CD55, ABCA1, LY96, PYCARD, HCK, ICAM1, IL1B, IL6, CXCL8, IRAK1, LTF, LYN, MYD88, NFKB1, NFKBIA, SERPINE1, CCL2, CCL5, NOD2, SYK, TLR2, TNFAIP3, TNFRSF1B, WNT5A, ZC3H12A, CD14, CD86, CD36
regulation of cell adhesion mediated by integrin	6.44	1.97	9	27	CYP1B1, LYN, SERPINE1, PIK3CG, PLAU, PTPN6, CCL5, SYK, FERMT3
cellular response to growth hormone stimulus	6.43	1.75	8	24	JAK3, LYN, PRLR, PTPN6, STAT3, SOCS1, IRS2, SOCS3
positive regulation of tissue remodeling	6.41	1.31	6	18	ADAM8, B4GALT1, SPP1, SYK, TFRC, VDR
regulation of anti- gen processing and presentation	6.40	1.09	5	15	LILRB2, PYCARD, NOD2, SLC11A1, THBS1
positive regulation of blood coagula- tion	6.40	1.09	5	15	HPSE, F3, SERPINE1, THBS1, CD36

Table 13 - continued from previous page

	Tuble	10 continu	cu nom p	i c vious	Puec
monocyte differen- tiation	6.40	1.09	5	15	CSF1R, IFI16, MT1G, MYC, VEGFA
negative regulation of bone mineraliza- tion	6.40	1.09	5	15	CCR1, GREM1, HIF1A, NFE2, SRGN
vascular endothelial growth factor sig- naling pathway	6.40	1.09	5	15	FLT1, PDGFRA, VEGFA, NRP2, NRP1
regulation of membrane pro- tein ectodomain proteolysis	6.40	1.09	5	15	ADAM8, IL1B, TIMP1, TIMP3, TNFRSF1B
multicellular organ- ismal homeostasis	6.26	2.22	10	31	AMPD2, AMPD3, METRNL, IL1A, IL1B, IL1RN, SLC11A2, PTGS2, SLC11A1, STAT3
positive regulation of leukocyte migra- tion	6.22	4.07	18	56	CCR1, AIF1, PYCARD, IL6, CXCL8, ITGA2, LGALS3, SER- PINE1, CCL2, CCL4, CCL5, CCL20, SELE, THBS1, TLR2, C3AR1, VEGFA, WNT5A
regulation of leuko- cyte chemotaxis	6.13	3.65	16	50	CCR1, AIF1, GREM1, IL6, CXCL8, LYN, SERPINE1, CCL2, CCL4, CCL5, NOD2, THBS1, C3AR1, CCR2, VEGFA, WNT5A
collagen fibril orga- nization	6.10	2.04	9	28	COL1A1, COL3A1, COL5A2, COL11A1, CYP1B1, DPT, GREM1, LOX, ADAMTS2
cellular response to lipopolysaccharide	6.04	3.43	15	48	LILRB2, CSF3, ABCA1, PY- CARD, ICAM1, IL6, CXCL8, NFKB1, SERPINE1, TN- FRSF1B, WNT5A, ZC3H12A, CD14, CD86, CD36
brown fat cell dif- ferentiation	5.99	1.61	7	22	CEBPB, LRG1, METRNL, ERO1L, PLAC8, PTGS2, BNIP3
response to transi- tion metal nanopar- ticle	5.99	3.94	17	54	ICAM1, IL1A, AQP9, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, NFKB1, SLC11A2, PTGS2, S100A8, S100A9, SOD2, VCAM1
regulation of type 2 immune response	5.92	1.39	6	19	IL4R, IL6, BCL6, NOD2, CCR2, CD86
response to vitamin D	5.92	1.39	6	19	TNC, PTGS2, SPP1, STC1, VDR, TRIM25
positive regulation of interleukin-6 pro- duction	5.86	2.33	10	32	LILRB2, FCER1G, PYCARD, IL1B, IL6, MYD88, NOD2, TLR2, WNT5A, CD36
regulation of fi- broblast growth factor receptor signaling pathway	5.82	1.17	5	16	SULF1, FAM20C, THBS1, WNT5A, RUNX2

## Table 13 – continued from previous page

regulation of alpha- beta T cell prolifer- ation	5.82	1.17	5	16	CD55, IRF1, C10orf54, SYK, CCR2
detection of exter- nal biotic stimulus	5.82	1.17	5	16	LY96, NLRC4, NOD2, TLR2, CD1D
tumor necrosis fac- tor superfamily cy- tokine production	5.78	4.52	19	62	ADAM8, IRAK3, FCER1G, PY- CARD, LTF, ARRB2, MYD88, PF4, SASH3, BCL3, NOD2, THBS1, TLR2, TNFAIP3, CCR2, ZC3H12A, CD14, CD86, CD36
cellular response to interleukin-1	5.75	1.89	8	26	PYCARD, HAS2, HIF1A, ICAM1, CXCL8, NFKB1, CCL2, CCL5
integrin-mediated signaling pathway	5.73	4.30	18	59	COL3A1, FCER1G, FGR, HCK, ITGA2, ITGAM, IT- GAX, ITGB2, ITGB8, NEDD9, PLEK, CEACAM1, SYK, TIMP1, TYROBP, FERMT3, PRAM1, ADAMTS1
positive regulation of T cell prolifera- tion	5.73	4.30	18	59	CD24, LILRB2, TNFSF13B, CORO1A, CD55, AIF1, PY- CARD, IL1B, IL6, IL6ST, SASH3, PTPRC, CCL5, SYK, CCR2, VCAM1, CD1D, CD86
positive regulation of cytokine secre- tion	5.65	3.12	13	43	FCN1, FGR, CLEC5A, PANX1, CLEC4E, IL1A, PTGER4, NOD2, SYK, TLR2, WNT5A, CD14, TNFSF15
regulation of lymphocyte prolif- eration	5.65	4.08	17	57	CD24, CORO1A, CD55, AIF1, PYCARD, IL1B, IL6, IL6ST, IRF1, LGALS3, MYD88, CCL5, SYK, CCR2, VCAM1, CD1D, CD86
negative regulation of B cell activation	5.62	1.68	7	23	CD300A, TNFRSF21, LYN, MNDA, BCL6, SAMSN1, TNFAIP3
regulation of lym- phocyte apoptotic process	5.61	2.41	10	33	ADAM8, HIF1A, JAK3, LGALS3, LYN, BCL6, CCL5, WNT5A, DOCK8, IRS2
positive regulation of angiogenesis	5.57	4.14	17	57	CHI3L1, LRG1, ADM, CTSH, CYP1B1, F3, FLT1, HIF1A, IL1A, IL1B, SERPINE1, ANGPTL4, TGFBR2, THBS1, C3, C3AR1, WNT5A
I-kappaB kinase/NF-kappaB signaling	5.56	1.92	8	27	LY96, TLR8, PTGS2, BCL3, TLR2, IL18R1, TIFA, CD14
response to fungus	5.52	2.19	9	30	LTF, MYD88, PTX3, S100A8, S100A9, S100A12, SYK, TLR2, CD86

Table 13 – continued from previous page

	Таыс	10 continue	sa nom p	revious	puge
negative regulation of leukocyte apop-	5.52	2.19	9	30	FCER1G, HCLS1, HIF1A, JAK3, BCL6, CCL5, NOD2,
totic process					DOCK8, IRS2
interleukin-1 beta	5.49	1.46	6	20	ABCA1, PANX1, PYCARD,
secretion					NLRC4, NOD2, WNT5A
adaptive immune	5.47	1.70	7	24	IL4R, IL6, JAK3, NFKB2,
response based on					RELB, TNFAIP3, IL18R1
somatic recombi-					
nation of immune					
receptors built					
from immunoglob-					
ulin superfamily					
domains					
cellular response to	5.41	1.97	8	27	CEBPB, COL1A1, COL3A1,
amino acid stimulus					COL5A2, CYBA, PDGFRA,
					CPEB4, SOCS1
negative regulation	5.33	1.24	5	17	ARRB2, PTPN6, PTPRC,
of lymphocyte me-					C10orf54, NOD2
diated immunity					
regulation of T-	5.33	1.24	5	17	IL4R, JAK3, SLC11A1, CCR2,
helper I type					ILIRLI
immune response	<b>-</b>	1.2.1			
positive regulation	5.33	1.24	5	17	FGR, FLIT, LYN, PDGFRA,
of phosphatidyll-					NOD2
nositol 3-kinase					
	۲۰۰	1.94		17	CDFF H 4D H C CACH2 CDoc
of CD4 positive	0.00	1.24	6	11	CD55, 1L4R, 1L6, SASH3, CD86
of CD4-positive,					
arpha-beta 1 cen					
regulation of blood	5 30	3.26	13	45	PDPN FAP FCFR1C LVN
coagulation	0.00	5.20	10	40	SERPINB2 PDGERA SER-
coagulation					PINE2 PLAT PLAU PLAUB
					PLEK PRKCD SYK
intrinsic apoptotic	5 29	1 75	7	24	CDKN1A PYCARD IFI16
signaling pathway	0.20	1.10		21	TAF9B. DDIT4. BCL3. CD44
in response to DNA					
damage by p53					
class mediator					
negative regulation	5.20	4.09	16	56	OLFM4, IRAK3, COL3A1,
of immune response					CD55, IFI16, LYN, ARRB2,
1					PTPN6, PTPRC, BCL6,
					SAMSN1, C10orf54, NOD2,
					TNFAIP3, CCR2, IL1RL1
response to	5.18	6.20	24	85	IFITM2, AIF1, FCGR1B,
interferon-gamma					GBP2, GCH1, HCK, ICAM1,
					IFNGR1, IFNGR2, IRF1,
					MT2A, PRKCD, PTPN2,
					PTPN6, CCL2, CCL5,
					SLC11A1, VCAM1, WNT5A,
					SOCS1, KYNU, SOCS3, CD86,
					CD44

Table 13 – continued from previous page

					1 - 0 -
regulation of bone remodeling	5.14	2.04	8	28	ADAM8, CSF1R, GREM1, TN- FRSF11B, SPP1, SYK, TFRC, TNFAIP3
cytokine secretion	5.14	3.06	12	43	CHI3L1, ABCA1, LRRC32, TN- FRSF21, IL6, LCP2, LYN, TLR8, TREM1, SRGN, NLRC4, S100A12
positive regulation of cytokine biosyn- thetic process	5.10	3.36	13	46	IL1A, IL1B, IRF1, LTB, MYD88, TLR8, BCL3, SYK, THBS1, TLR2, CCR2, WNT5A, CD86
myeloid cell differ- entiation	5.06	3.36	13	47	CSF1R, CSF3, SBNO2, SNX10, IFI16, JUNB, MMP9, MT1G, PIK3CD, RELB, TFRC, TGFBR2, CD86
alpha-beta T cell differentiation in- volved in immune response	5.04	2.33	9	32	IL4R, IL6, JAK3, PTGER4, RELB, BCL3, BCL6, IL18R1, CD86
phagosome matura- tion	5.04	2.33	9	32	TCIRG1, CORO1A, CYBA, CYBB, LTF, NCF2, NCF4, SLAMF8, SLC11A1
negative regulation of hemostasis	5.04	2.33	9	32	FAP, SERPINE1, SERPINB2, PDGFRA, SERPINE2, PLAT, PLAU, PLAUR, THBS1
leukocyte cell-cell adhesion	5.03	2.59	10	36	TNIP1, ICAM1, ITGAM, ITGB2, CCL5, SELE, SELPLG, SYK, VCAM1, FERMT3
positive regulation of protein kinase B signaling	5.00	3.14	12	43	ADAM8, HPSE, CHI3L1, CSF3, HBEGF, F3, HCLS1, IL6, ARRB2, PIK3CG, FAM110C, THBS1
regulation of re- sponse to cytokine stimulus	4.99	4.74	18	65	CD24, IRAK3, PYCARD, HIF1A, IFNAR2, IFNGR1, IFNGR2, IL1RN, IL6ST, IRAK1, PTPN2, PTPN6, PT- PRC, ROBO1, CCL5, WNT5A, SOCS1, SOCS3
positive regulation of production of molecular mediator of immune response	4.99	1.82	7	25	FCER1G, SASH3, NOD2, TLR2, WNT5A, CD36, CD37
response to activity	4.99	1.82	7	25	METRNL, HIF1A, ITGA2, NCF2, CCL2, SOD2, SCO2

Table 13 – continued from previous page

-	Table	15 continu		ICVIOU3	page
inflammatory	4.99	12.63	47	191	PDPN, CHI3L1, CCR1, CSF1R,
response					CYBA, CYBB, S1PR3, AIF1,
					KDM6B, STAB1, LY96,
					ACKR1, PYCARD, CXCL1,
					CXCL2, CXCL3, HIF1A, IFI16,
					CXCL8 CXCB2 ITGB2
					LYZ TLB8 PIK3CD PTX3
					$\begin{array}{c} \mathbf{M} \mathbf{P} \mathbf{C} \mathbf{A} \\ \mathbf{M} \mathbf{P} \mathbf{C} \mathbf{A} \\ \mathbf{D} \mathbf{P} \mathbf{O} \mathbf{K} 2 \\ \mathbf{D} \mathbf{P} \mathbf{O} \mathbf{K} 2 \\ \mathbf{D} \mathbf{P} \mathbf{O} \mathbf{K} 2 \\ \mathbf{D} \mathbf{P} \mathbf{K} \mathbf{P} \mathbf{R} 2 \\ \mathbf{D} \mathbf{K} \mathbf{P} \mathbf{R} 2 \\ \mathbf{D} \mathbf{K} \mathbf{R} \mathbf{R} 2 \\ \mathbf{D} \mathbf{K} \mathbf{R} \mathbf{R} 2 \\ \mathbf{D} \mathbf{K} \mathbf{R} \mathbf{R} 2 \\ \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R}$
					CC12 $CC14$ $CC12$ $CC120$
					CUL2, CUL4, CUL0, CUL20, CUL
					CACLO, NFKBIZ, CLECTA,
					SLCHAI, SPPI, TNFAIP6,
					C3ARI, C5ARI, CXCR4,
					IL18RAP, PSTPIP1, NMI,
					CD14, THEMIS2, CD44
positive regulation	4.92	1.31	5	18	PANX1, PYCARD, IFI16,
of interleukin-1					NOD2, WNT5A
beta production					
cellular metabolic	4.92	1.31	5	18	TYMP, AMPD2, AMPD3,
compound salvage					UPP1, PDXK
apoptotic cell clear-	4.92	1.31	5	18	CCL2. TGM2. THBS1. C3.
ance	_	-	_	_	CD36
regulation of actin	4 92	1 31	5	18	CSF1B CSF3 HCK HCLS1
cytoskeleton reor-	1.02	1.01		10	PDGFRA
ganization					
regulation of on	4.02	1 91	5	18	ICAM1 SEPDINE1
dethalial call amon	4.92	1.01	5	10	ANCOTI 4 THOSI THEAD?
dothenal cen apop-					ANGPIL4, INDSI, INFAIP5
totic process	1.00	0.10	0		
regulation of	4.90	2.12	8	29	FCERIG, TNFRSF21, PY-
interleukin-10					CARD, JAK3, SASH3, BCL3,
production					NOD2, TLR2
positive regulation	4.88	1.58	6	22	GREM1, ARRB2, SERPINE1,
of endocytosis					SELE, VEGFA, CD14
cellular extravasa-	4.87	1.59	6	22	ITGAM, PTGER4, CCL2,
tion					SELE, SELPLG, VCAM1
regulation of alpha-	4.86	2.39	9	33	IKZF1, CD300A, IL4R, IL6,
beta T cell activa-					JAK3, SASH3, BCL6, TGFBR2,
tion					CD86
cvtokine produc-	4.86	2.39	9	33	CD55, FCER1G, TREM1,
tion involved in					SASH3. NOD2. SLC11A1.
immune response					TLB2 WNT5A CD36
regulation of	4.85	2 66	10	37	ILAB IBF1 IAK3 PTPN6
adaptive immune	4.00	2.00	10	01	PTPRC BCL6 SAMSN1
rosponso					$C10 \circ rf54$ TNFAID2 II 1PL 1
response	4.02	9.41	0		CIUMINA, INFAILS, ILIALI
positive regulation	4.85	2.41	9	- 33	SEMA4D, PIKJAPI, USFJ,
or phosphatidyii-					FGR, FLII, HCLSI, PDGFRA,
nositol 3-kinase					PTPN6, CCL5
signaling					
regulation of cell	4.81	4.60	17	63	SEMA4D, PDPN, CORO1A,
shape					FGD4, CSF1R, FGR,
					SH3KBP1, HCK, ICAM1, IL6,
					ITGB2, MYO10, CDC42SE1,
					CCL2, VEGFA, LST1, FGD3
					T 1 10 C 1 1

			~		
Lahle	13 -	continued	trom	previous	nage
Tuble	<b>T</b> O	continucu	110111	previous	puge

protein import into nucleus, transloca- tion	4.81	1.61	6	22	CDKN1A, IL6, NFKBIA, BCL3, BCL6, SLC11A1
patterning of blood vessels	4.81	1.61	6	22	FLT1, SPI1, TGFBR2, VEGFA, CXCR4, NRP1
positive regulation of mesenchymal cell proliferation	4.81	1.61	6	22	GAS1, MYC, TGFBR2, VEGFA, WNT5A, IRS2
negative regula- tion of I-kappaB kinase/NF-kappaB signaling	4.81	1.61	6	22	TNIP1, OLFM4, PYCARD, NFKBIA, TNFAIP3, IL1RL1
regulation of chemokine produc- tion	4.76	1.89	7	26	CSF1R, ACKR1, PYCARD, HIF1A, IL4R, TLR2, IL1RL1
positive regulation of alpha-beta T cell differentiation	4.73	1.90	7	26	IKZF1, IL4R, IL6, SASH3, SYK, TGFBR2, CD86
response to bac- terium	4.71	11.19	40	160	CD24, TRIB1, LILRB2, CEBPB, IRAK3, ADM, CSF2RB, CSF3, CD55, ABCA1, LY96, GCH1, CXCL2, HCK, ICAM1, IL1B, IL1RN, CXCL8, IL10RA, IRAK1, LYN, MGST1, NCF2, NFKB1, NFKBIA, PT- GER4, PTGS2, CCL2, CCL5, SELE, SOD2, TNFAIP3, TN- FRSF1B, VCAM1, WNT5A, ZC3H12A, CD1D, CD14, CD86, PTGES
positive regulation of chemotaxis	4.71	4.67	17	64	CCR1, LPAR1, AIF1, F3, IL6, CXCL8, ITGA2, SERPINE1, CCL2, CCL4, CCL5, THBS1, C3AR1, CCR2, VEGFA, WNT5A, NRP1
toll-like receptor 4 signaling pathway	4.68	5.25	19	72	PIK3AP1, LY96, BIRC3, IRAK1, ITGAM, ITGB2, LTF, LYN, MYD88, NFKB1, NFKB2, NFKBIA, RPS6KA1, NOD2, TLR2, TNFAIP3, TRAF3, CD14, CD36
positive chemotaxis	4.67	2.19	8	30	CORO1A, F3, CXCL8, ITGA2, LGALS3, CCL5, VEGFA, NRP1
regulation of leuko- cyte proliferation	4.65	6.40	23	89	CD24, CDKN1A, TNFSF13B, CORO1A, CD55, AIF1, PY- CARD, IL1B, IL6, IL6ST, IRF1, LGALS3, MYD88, SASH3, PTPRC, BCL6, CCL5, SYK, CCR2, VCAM1, IRS2, CD1D, CD86

Table 13 – continued from previous page

negative regulation of NF-kappaB tran- scription factor ac- tivity	4.60	2.77	10	38	IRAK3, CYP1B1, PYCARD, IRAK1, ARRB2, NFKBIA, NOD2, TNFAIP3, TRAF3, ZC3H12A
positive regulation of NF-kappaB tran- scription factor ac- tivity	4.58	5.91	21	81	ADAM8, IRAK3, PYCARD, ICAM1, IL1B, IRAK1, LTF, MYD88, NFKB1, NFKB2, NFKBIA, NLRC4, S100A8, S100A9, S100A12, NOD2, TLR2, WNT5A, TRIM25, TRIM8, CFLAR
positive regulation of cellular compo- nent movement	4.57	13.94	48	191	ADAM8, SEMA4D, PDPN, CORO1A, CCR1, COL1A1, CSF1R, CTSH, HBEGF, LPAR1, AIF1, F3, FGR, FLT1, SRPX2, PYCARD, HAS2, HIF1A, ICAM1, IL6, CXCL8, ITGA2, LGALS3, LYN, MMP9, MYO1F, SERPINE1, PDGFRA, RETN, PTGS2, PTPRC, BCL6, CCL2, CCL4, CCL5, CCL20, SELE, FAM110C, TGFBR2, THBS1, TLR2, C3AR1, CCR2, VEGFA, WNT5A, IRS2, NRP2, NRP1
defense response to bacterium	4.57	6.20	22	86	FCER1G, STAB1, PYCARD, HP, LTF, LYZ, SERPINE1, PLAC8, CFP, TREM1, PPBP, PRKCD, SLAMF8, NLRC4, BCL3, S100A8, S100A9, S100A12, CCL20, CXCL6, SLC11A1, SYK
positive regulation of gliogenesis	4.52	1.68	6	23	IL6ST, LIF, LYN, SERPINE2, TLR2, CXCR4
regulation of tyrosine phospho- rylation of Stat3 protein	4.52	1.68	6	23	CSFIR, IL6, IL6ST, LIF, PTPN2, SOCS1
response to interleukin-4	4.52	1.68	6	23	CORO1A, IL1RN, IL4R, JAK3, NFIL3, PTPN2
zymogen activation	4.51	5.11	18	70	CTSH, F3, PYCARD, IFI16, MAP3K5, MFI2, SLC11A2, SERPINE1, SERPINE2, PLAT, NLRC4, ROBO1, S100A8, S100A9, BID, THBS1, TN- FRSF10B, TNFSF15
positive regulation of mononuclear cell proliferation	4.51	6.27	22	86	CD24, CDKN1A, LILRB2, TNFSF13B, CORO1A, CD55, AIF1, PYCARD, IL1B, IL6, IL6ST, MYD88, SASH3, PT- PRC, BCL6, CCL5, SYK, CCR2, VCAM1, IRS2, CD1D, CD86
regulation of cellu- lar response to in- sulin stimulus	4.49	1.97	7	27	IL1B, PID1, PRKCD, PTPN2, PTPRE, SOCS1, SOCS3
----------------------------------------------------------------------------------------------------	------	-------	----	-----	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
nucleotide-binding domain, leucine rich repeat con- taining receptor signaling pathway	4.45	2.55	9	35	PANX1, PYCARD, BIRC3, IRAK1, NFKBIA, NLRC4, NOD2, TNFAIP3, PSTPIP1
negative regulation of coagulation	4.45	2.55	9	35	FAP, SERPINE1, SERPINB2, PDGFRA, SERPINE2, PLAT, PLAU, PLAUR, THBS1
negative regulation of leukocyte prolif- eration	4.44	3.14	11	43	LILRB2, CD300A, LRRC32, GREM1, TNFRSF21, LYN, MNDA, PTPN6, C10orf54, TNFAIP3, LST1
regulation of innate immune response	4.43	13.94	47	191	ADAM8, TNIP1, IRAK3, PIK3AP1, CTSS, FCN1, FGR, LY96, SAMHD1, PYCARD, HCK, BIRC3, IFI16, IF- NAR2, IFNGR1, IFNGR2, IRAK1, IRF1, ITGAM, ITGB2, LTF, LYN, ARRB2, MYO1F, MYD88, NFKB1, NFKB2, NFKBIA, TLR8, PLSCR1, PTPN2, PTPN6, NLRC4, RPS6KA1, CCL5, NOD2, CLEC7A, TLR2, TNFAIP3, TRAF3, WNT5A, SOCS1, SOCS3, CD1D, CD14, CD86, CD36
MyD88-dependent toll-like receptor signaling pathway	4.42	4.30	15	59	TNIP1, IRAK3, LY96, IRAK1, IRF1, MYD88, NFKB1, NFKB2, NFKBIA, TLR8, RPS6KA1, NOD2, TLR2, CD14, CD36
response to virus	4.36	4.93	17	69	IRAK3, CD55, ENO1, FGR, CLEC5A, ANPEP, ICAM1, IFNAR2, IFNGR1, IFNGR2, ITGA2, MYD88, BCL3, CCL4, CCL5, CCL8, CXCR4
regulation of vascu- lature development	4.35	8.24	28	113	CHI3L1, LRG1, ADM, CTSH, CYP1B1, F3, VASH1, STAB1, FLT1, SULF1, SRPX2, HIF1A, IL1A, IL1B, IL6, SERPINE1, ANGPTL4, PF4, PTGS2, CCL2, TGFBR2, THBS1, TN- FAIP3, C3, C3AR1, CCR2, VEGFA, WNT5A
regulation of tumor necrosis factor pro- duction	4.34	2.30	8	32	IRAK3, LTF, ARRB2, BCL3, THBS1, TNFAIP3, CCR2, ZC3H12A

					P=0-
positive regulation	4.29	2.63	9	36	LRG1, CYBA, F3, HIF1A,
of endothelial cell					CCL2, VEGFA, WNT5A,
proliferation					NRP2, NRP1
sprouting angiogen-	4.28	2.33	8	32	FLT1, GREM1, SRPX2,
esis					PTGS2, ROBO1, THBS1,
					VEGFA, NRP1
response to	4.28	5.88	20	84	CEBPB, IRAK3, ADM,
lipopolysaccha-					CSF2RB, GCH1, IL1RN,
ride					IL10RA, MGST1, NCF2,
					PTGER4. PTGS2. S100A8.
					S100A9. SELE. NOD2.
					SLC11A1. SOD2. C5AR1.
					VCAM1. PTGES
regulation of CD4-	4.27	1.75	6	24	IL4R. IL6. JAK3. SASH3.
positive alpha-beta		1.1.0			BCL6 CD86
T cell differentia-					
tion					
foam cell differenti-	4 27	1 75	6	24	ABCA1 NFKB1 NFKBIA
ation	1.21	1.10			PF4 PLA2G2A CD36
temperature home-	4 26	1 46	5	20	ILIA ILIB ILIBN PTGS2
ostasis	1.20	1.10		20	STAT3
B cell homeostasis	4 26	1 46	5	20	TNFSF13B HIF1A LYN
	1.20	1.10		20	PIK3CD TNFAIP3
positive regulation	4 26	1 46	5	20	CEBPB METRNL PTGS2
of fat cell differenti-	1.20	1.10			ZC3H12A, MEDAG
ation					
negative regulation	4 26	1 46	5	20	IL6 PLEK DDIT4 STAT3
of carbohydrate	1.20	1.10			IER3
metabolic process					
nucleotide-binding	4 26	1 46	5	20	BIRC3 IRAK1 NFKBIA
oligomerization	1.20	1.10			NOD2 TNFAIP3
domain containing					
signaling pathway					
nattern recognition	4 25	8 39	28	115	TNIP1 IRAK3 PIK3AP1
recentor signaling	4.20	0.00	20	110	CTSS FCN1 LV06 BIRC3
nathway					IBAK1 IBE1 ITCAM ITCB2
pathway					ITE IVN ABB2 MVD88
					NEKB1 NEKB9 NEKDIA
					$\begin{array}{ccc} \mathbf{M}^{\mathbf{T}}\mathbf{K}\mathbf{D}\mathbf{I}, & \mathbf{M}^{\mathbf{T}}\mathbf{K}\mathbf{D}\mathbf{I}, & \mathbf{M}^{\mathbf{T}}\mathbf{K}\mathbf{D}\mathbf{I}\mathbf{A}, \\ \mathbf{T}\mathbf{I} \mathbf{D}\mathbf{Q} & \mathbf{D}\mathbf{D}\mathbf{G}\mathbf{K}\mathbf{K}\mathbf{A}1 & \mathbf{M}\mathbf{D}\mathbf{D}\mathbf{Q} \end{array}$
					$\begin{bmatrix} 1 \text{ LIG}, & \text{If } \text{SULAI}, & \text{NOD2}, \\ C I F C 7 \Lambda & T I D 2 & T N F \Lambda I D 2 \end{bmatrix}$
					$\Box \Box \Box \Box \Box (A, \Box \Box K2, \Box \Pi FAIP3, \Box \Box \Delta E2 CD14 CD26 CD26$
					1 KAF3, CD14, CD86, CD36

Table 13 - continued from previous page

	Table	13 – continue	ed from p	revious	page
regulation of cell motility	4.23	17.01	55	238	ADAM8, SEMA4D, PDPN, CORO1A, CCR1, COL1A1, CSF1R, CTSH, HBEGF, LPAR1, F3, SPATA13, FGR, FLT1, SRPX2, PYCARD, HAS2, HIF1A, ICAM1, IL6, CXCL8, ITGA2, LAMA2, LGALS3, LYN, MMP9, MMP10, MYO1F, PDGFRA, SERPINE2, PLAU, RETN, PTGS2, PTPRC, RAC2, CCL4, CCL5, CCL20, SELE, NOD2, FAM110C, SGK1, SORL1, STK10, TGFBR2, TLR2, C3AR1, CCR2, VEGFA, WNT5A, CXCR4, SH3BGRL3, IRS2, NRP2, NRP1
positive regulation of defense response	4.23	9.62	32	137	IRAK3, PIK3AP1, FCN1, LY96, PYCARD, HCK, BIRC3, IFI16, IRAK1, IRF1, ITGAM, ITGB2, LTF, LYN, ARRB2, MYD88, NFKB1, NFKB2, NFKBIA, TLR8, PLSCR1, NLRC4, RPS6KA1, CCL5, NOD2, CLEC7A, TNFAIP3, TRAF3, CD1D, CD14, CD86, CD36
adaptive immune response	4.21	1.46	5	21	CTSS, TNFRSF21, PIK3CD, PIK3CG, SYK
homotypic cell-cell adhesion	4.20	2.66	9	37	LYN, PDGFRA, SERPINE2, PIK3CG, PLEK, PRKCD, PTPN6, SYK, FERMT3
cellular defense re- sponse	4.17	3.28	11	45	LILRB2, TCIRG1, CLEC5A, LY96, CXCR2, LSP1, MNDA, NCF2, C5AR1, CCR2, TY- ROBP
defense response to Gram-positive bac- terium	4.15	2.99	10	41	FGR, IL6, MYO1F, MYD88, PLA2G2A, PLD1, NOD2, TLR2, C5AR1, CD36
cellular response to hydrogen peroxide	4.13	2.70	9	37	PPIF, CYP1B1, KDM6B, GPX3, HP, IL6, MAP3K5, BNIP3, TNFAIP3
organ regeneration	4.11	2.41	8	33	CDKN1A, ADM, LCP1, NNMT, CCL2, TGFBR2, C5AR1, UCP2
positive regulation of interferon- gamma production	4.11	2.41	8	33	PYCARD, IL1B, SASH3, BCL3, SLC11A1, CCR2, WNT5A, IL18R1
myeloid cell devel- opment	4.11	2.41	8	33	ITGAM, LTF, SLC11A2, FAM20C, PTPN6, BCL6, TYROBP, PTBP3
T cell proliferation	4.08	3.63	12	51	DOCK2, LRRC32, TNFRSF21, IRF1, ITGAM, LGALS3, PIK3CG, PTPN6, C10orf54, SLC11A1, CXCR4, DOCK8

T 1 1 1 0		c		
Table 13 -	<ul> <li>continued</li> </ul>	trom	previous	page

			<u>, , , , , , , , , , , , , , , , , , , </u>		P=8=
heterotypic cell-cell adhesion	4.08	2.12	7	29	LILRB2, IL1B, IL1RN, ITGAX, ITGB2, CD1D, CD44
NIK/NF-kappaB signaling	4.08	2.12	7	29	CHI3L1, BIRC3, IRAK1, NFKB2, RELB, TNFRSF10B, TNFSF15
positive regulation of osteoblast differ- entiation	4.08	2.12	7	29	CEBPB, CTHRC1, IL6, IL6ST, LTF, FAM20C, RUNX2
mammary gland morphogenesis	4.08	2.12	7	29	CSF1R, B4GALT1, NR3C1, ROBO1, TGFBR2, VDR, WNT5A
regulation of re- sponse to wounding	4.07	4.84	16	71	PDPN, HPSE, HBEGF, F3, FAP, SERPINB2, PDGFRA, SERPINE2, PLAT, PLAU, PLAUR, PLEK, SYK, TGFBR2, THBS1, CD36
cellular response to mechanical stimu- lus	4.05	3.36	11	46	COL1A1, CYBA, IL1B, IRF1, MYD88, NFKB1, TLR8, PT- GER4, PTGS2, BNIP3, TN- FRSF10B
muscle cell prolifer- ation	4.05	4.60	15	63	TRIB1, HBEGF, AIF1, IGFBP3, IL6, IRAK1, ITGA2, MYD88, RETN, PTGS2, CCL5, TGFBR2, TGM2, TNFAIP3, CFLAR
negative regulation of multi-organism process	4.05	4.60	15	63	TNIP1, IFITM2, IFI16, ISG20,           LTF, MYD88, PLSCR1, PTX3,           CCL4, CCL5, NOD2, TLR2,           TRIM25, TRIM8, CD36
intrinsic apoptotic signaling pathway in response to ox- idative stress	4.05	1.82	6	25	CYP1B1, HIF1A, MCL1, MAP3K5, PRKCD, SOD2
regulation of NF- kappaB import into nucleus	4.05	1.82	6	25	IL1B, NFKBIA, PTGS2, BCL3, TLR2, IL18R1
hydrogen peroxide metabolic process	4.05	1.82	6	25	CYBA, CYBB, GPX3, HP, RAC2, SOD2
positive regulation of transcription fac- tor import into nu- cleus	4.05	1.82	6	25	CSF3, HCLS1, IL1B, PTGS2, TLR2, IL18R1
regulation of blood vessel endothelial cell migration	4.05	1.82	6	25	VASH1, SRPX2, PTGS2, THBS1, VEGFA, SH3BGRL3
negative regulation of viral genome replication	4.05	1.82	6	25	TNIP1, IFITM2, IFI16, ISG20, PLSCR1, CCL5
interferon-gamma- mediated signaling pathway	4.03	2.75	9	38	FCGR1B, GBP2, HCK, ICAM1, IRF1, MT2A, PRKCD, VCAM1, CD44

T cell activation in- volved in immune response	4.03	4.30	14	59	ICAM1,         IL4R,         IL6,         JAK3,           LCP1,         LGALS3,         PTGER4,           RAB27A,         RELB,         BCL3,         BCL6,           SLC11A1,         IL18R1,         CD86
ruffle organization	4.00	1.53	5	21	CSF1R, AIF1, ICAM1, RHOG, PLEK
response to proges- terone	4.00	1.53	5	21	JUNB, NCF2, CCL2, THBS1, TLR2
positive regulation of oxidoreductase activity	4.00	1.53	5	21	GCH1, HIF1A, IL1B, NOD2, VDR
negative regulation of signal transduc- tion in absence of ligand	4.00	1.53	5	21	GAS1, IL1A, IL1B, MCL1, PF4
negative regula- tion of extrinsic apoptotic signaling pathway in absence of ligand	4.00	1.53	5	21	GAS1, IL1A, IL1B, MCL1, PF4
negative regulation of leukocyte activa- tion	4.00	5.91	19	81	LILRB2, CD300A, LRRC32, TNFRSF21, IL4R, IRF1, JAK3, LGALS3, LYN, MNDA, PTPN6, BCL6, SAMSN1, C10orf54, TN- FAIP3, CCR2, LST1, ZC3H12A, CD37
humoral immune response mediated by circulating immunoglobulin	3.95	2.48	8	34	CD55, C1RL, PTPN6, BCL3, NOD2, C1R, C1S, C3
membrane protein proteolysis	3.95	2.48	8	34	ADAM8, CTSH, IL1B, NFKB1, TIMP1, TIMP3, TNFRSF1B, SPPL2A
B cell receptor sig- naling pathway	3.95	2.48	8	34	CD300A, LYN, MNDA, PIK3CD, PTPN6, PTPRC, SYK, LAT2
toll-like recep- tor TLR1:TLR2 signaling pathway	3.94	3.43	11	47	LY96, IRAK1, MYD88, NFKB1, NFKB2, NFKBIA, RPS6KA1, NOD2, TLR2, CD14, CD36
toll-like recep- tor TLR6:TLR2 signaling pathway	3.94	3.43	11	47	LY96, IRAK1, MYD88, NFKB1, NFKB2, NFKBIA, RPS6KA1, NOD2, TLR2, CD14, CD36
regulation of cell adhesion	3.94	1.54	5	22	CYTH4, ICAM1, CXCL8, LAMA2, CYTIP
tyrosine phospho- rylation of STAT protein	3.93	2.18	7	30	CSF1R, HCLS1, IL6, JAK3, LYN, CCL5, SOCS1
negative regulation of immune effector process	3.92	3.12	10	43	IRAK3, CD300A, CD55, LGALS3, ARRB2, PTPN6, PTPRC, C10orf54, NOD2, CCR2

cellular response to cytokine stimulus	3.91	2.47	8	37	CORO1A, DPYSL3, AIF1, HCLS1, MME, MT1X, NFIL3, CD86
positive regulation of endothelial cell migration	3.90	2.19	7	30	SRPX2, PTGS2, THBS1, VEGFA, WNT5A, NRP2, NRP1
positive regulation of reactive oxygen species metabolic process	3.90	2.19	7	30	CDKN1A, PID1, PRKCD, TGFBR2, THBS1, ZC3H12A, CD36
regulation of ERK1 and ERK2 cascade	3.90	1.87	6	26	TNIP1, LIF, LYN, PTPN2, PTPN6, SYK
cellular response to inorganic substance	3.89	4.74	15	65	PPIF, SPIDR, ALOX5AP, JUNB, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, SLC11A2, BNIP3, WNT5A, CD86
positive regulation of locomotion	3.88	9.63	30	135	ADAM8, SEMA4D, PDPN, CORO1A, COL1A1, CSF1R, CTSH, HBEGF, FGR, FLT1, SRPX2, PYCARD, HAS2, HIF1A, ICAM1, LGALS3, LYN, MMP9, MYO1F, PDGFRA, RETN, PTGS2, PTPRC, CCL20, SELE, FAM110C, TGFBR2, TLR2, IRS2, NRP2
negative regula- tion of extrinsic apoptotic signaling pathway	3.87	3.79	12	52	GAS1, ICAM1, IL1A, IL1B, LGALS3, MCL1, SERPINE1, PF4, THBS1, TNFAIP3, NRP1, CFLAR
regulation of be- havior	3.86	8.03	25	110	CCR1, LPAR1, AIF1, F3, GREM1, IL6, CXCL8, ITGA2, LYN, SERPINE1, PDGFRA, RETN, PTPN2, ROBO1, CCL2, CCL4, CCL5, NOD2, THBS1, C3AR1, CCR2, VEGFA, WNT5A, CXCR4, NRP1
T-helper cell differ- entiation	3.86	1.89	6	26	IL6, PTGER4, RELB, BCL3, IL18R1, CD86
toll-like receptor 2 signaling pathway	3.85	3.49	11	48	PIK3AP1, LY96, IRAK1, MYD88, NFKB1, NFKB2, NFKBIA, RPS6KA1, TLR2, CD14, CD36
platelet aggrega- tion	3.79	1.60	5	22	PDGFRA, PIK3CG, PLEK, PTPN6, FERMT3
regulation of B cell proliferation	3.79	3.21	10	44	CDKN1A, TNFSF13B, CD300A, TNFRSF21, LYN, MNDA, SASH3, PTPRC, BCL6, IRS2
positive regulation of JAK-STAT cas- cade	3.79	3.21	10	44	CD300A, CSF1R, CYP1B1, HCLS1, IL6, IL6ST, LIF, LYN, PRLR, CCL5

Table 13 – continued from previous page

			· · · ·		1.0
cellular response to tumor necrosis fac- tor	3.78	5.18	16	71	CHI3L1, CYBA, TNFRSF21, PYCARD, HAS2, ICAM1, CXCL8, SLC11A2, PID1, DTDN2, CCL2, CCL7, TUDC1
					TNFRSF1B, TRAF3, VCAM1
regulation of T cell activation	3.76	4.85	15	68	CD24, TNFSF13B, CORO1A, MAP3K8, AIF1, PYCARD, IL1B, IL6ST, LYN, PTPRC, CCL2, CCL5, NOD2, VCAM1, CD1D
response to cold	3.76	1.61	5	22	ADM, METRNL, IL6, NFKBIA, PLAC8
negative regulation of cell-substrate ad- hesion	3.76	1.61	5	22	COL1A1, MFI2, SERPINE1, BCL6, THBS1
negative regulation of tumor necrosis factor production	3.76	1.61	5	22	IRAK3, ARRB2, NOD2, TN- FAIP3, ZC3H12A
mammary gland duct morphogenesis	3.76	1.61	5	22	CSF1R, NR3C1, ROBO1, VDR, WNT5A
regulation of interleukin-1 pro- duction	3.74	2.26	7	31	S1PR3, PANX1, PYCARD, IFI16, ARRB2, NOD2, WNT5A
filopodium assem- bly	3.74	2.26	7	31	FGD4, DPYSL3, SPATA13, ARHGAP26, MYO10, PRKCD, FGD3
platelet degranula- tion	3.73	4.23	13	58	FCER1G, LYN, SERPINE1, PF4, SERPINA1, PLEK, PPBP, SRGN, SYK, THBS1, TIMP1, VEGFA, CD36
antigen processing and presenta- tion of exogenous peptide antigen via MHC class I, TAP-dependent	3.73	2.92	9	40	CYBA, CYBB, FCGR1B, NCF2, NCF4, PSMB9, TAP1, TAPBP, CD36
negative regulation of lymphocyte pro- liferation	3.73	2.92	9	40	LILRB2, CD300A, LRRC32, TNFRSF21, LYN, MNDA, PTPN6, C10orf54, LST1
pyruvate metabolic process	3.73	3.57	11	49	ENO1, HIF1A, HK2, HK3, PFKFB3, PFKFB4, PGK1, DDIT4, STAT3, IER3, SLC16A3
negative regulation of phosphorylation	3.73	6.55	20	91	PPIF, TRIB1, CDKN1A, SEMA4D, GREM1, PYCARD, BIRC3, IGFBP3, IL6, ER- RFI1, DDIT4, PID1, DNAJC3, PTPRC, BDKRB2, SAMSN1, SOCS1, SOCS3, GMFG, MVP

leukocyte mediated immunity	3.71	12.77	38	175	CTSC, CD300A, CTSH, CD55, FCER1G, FGR, ICAM1, IL1B, IL6, JAK3, LYN, ARRB2, MYO1F, MYD88, C1RL, TLR8, PIK3CD, PIK3CG, TREM1, SASH3, PRKCD, PTPN6, PT- PRC, RAB27A, BCL3, BCL6, C10orf54, NOD2, SLC11A1, STXBP2, SYK, C1R, C1S, C3, CCR2, LAT2, PRAM1, TNFSF13
regulation of reac- tive oxygen species metabolic process	3.69	1.95	6	27	CYP1B1, HP, BIRC3, RAC2, SYK, IER3
activation of cysteine-type endopeptidase ac- tivity involved in apoptotic process	3.69	3.94	12	54	CTSH, F3, PYCARD, MAP3K5, SLC11A2, NLRC4, ROBO1, S100A8, S100A9, BID, TN- FRSF10B, TNFSF15
cell activation	3.68	17.78	52	263	CD300A, AMICA1, DOCK2, SBNO2, IL17RA, LRRC32, TNFRSF21, ICAM1, CXCL8, CXCR2, IRF1, ITGAM, JAK3, LCP1, LGALS3, MNDA, MT1G, MYO1F, NFKB2, TLR8, PIK3CD, PRLR, PT- GER4, PREX1, PTPN2, PTPRE, RAB27A, RELB, BCL3, S100A12, SELPLG, SAMSN1, C10orf54, CLEC7A, SLC7A2, SLC11A1, SPI1, STXBP2, TLR2, TNFAIP3, TYROBP, LAT2, CXCR4, LST1, ZC3H12A, DOCK8, PRAM1, RUNX2, IL18R1, SKAP2, CD37, CD48
complement activa- tion	3.67	2.63	8	36	CD55, FCN1, C1RL, CFP, CFB, C1R, C1S, C3
regulation of interleukin-8 pro- duction	3.67	2.63	8	36	FCN1, PYCARD, IL1B, SER- PINE1, TLR8, BCL3, TLR2, WNT5A
regulation of oxi- doreductase activ- ity	3.67	2.63	8	36	GCH1, HIF1A, HP, IL1B, NFKB1, SLAMF8, NOD2, VDR
regulation of pro- tein secretion	3.66	8.03	24	110	ADAM8, CSF1R, FCN1, FGR, CLEC5A, PANX1, LRRC32, CLEC4E, TNFRSF21, PY- CARD, IL1A, IL4R, IL6, LYN, TLR8, SRGN, PTGER4, NOD2, SYK, TLR2, WNT5A, IL1RL1, CD14, TNFSF15

embryonic cranial skeleton morpho- genesis	3.66	1.97	6	27	RDH10, GAS1, CHST11, PDGFRA, TGFBR2, RUNX2
alpha-beta T cell activation	3.63	1.65	5	23	DOCK2, PTGER4, RELB, BCL3, IL18R1
regulation of hu- moral immune re- sponse	3.59	2.33	7	32	CD55, CFP, PTPN6, CFB, NOD2, C3, CD37
response to fatty acid	3.59	2.33	7	32	ACSL1, TNC, PID1, PTGS2, TLR2, UCP2, DGAT2
response to cy- tokine	3.58	12.32	36	181	CCR1, COL3A1, CSF1R, CSF2RB, CSF3, CSF3R, DPYSL3, ACSL1, IL17RA, ACKR1, HCLS1, IL1A, IL1B, IL1R1, IL6, CXCR2, IL10RA, JUNB, MCL1, MME, MT1X, MYD88, NFKB1, PF4, PLSCR1, PRLR, SELPLG, STAT3, TIMP1, CCR2, IL1R2, CXCR4, IL18R1, IL1RL1, OSMR, PTGES
positive regulation of B cell activation	3.58	3.36	10	46	CDKN1A, TNFSF13B, IL6, SASH3, PTPRC, BCL6, NOD2, SYK, IRS2, TNFSF13
complement activa- tion, classical path- way	3.55	1.68	5	23	CD55, C1RL, C1R, C1S, C3
developmental pro- grammed cell death	3.55	1.68	5	23	B4GALT1, IL1A, IL1B, SPI1, VDR
regulation of interferon-beta production	3.55	1.68	5	23	PYCARD, IRF1, TLR8, TLR2, TRAF3
regulation of lipid kinase activity	3.55	1.68	5	23	FGR, FLT1, LYN, PDGFRA, NOD2
regulation of cellu- lar response to ox- idative stress	3.55	1.68	5	23	HIF1A, HP, MCL1, SOD2, CD36
negative regulation of T cell activation	3.54	3.72	11	51	LILRB2, CD300A, LRRC32, TNFRSF21, IL4R, IRF1, JAK3, LGALS3, PTPN6, BCL6, C10orf54
negative regulation of angiogenesis	3.54	2.70	8	37	VASH1, STAB1, SULF1, SER- PINE1, PF4, CCL2, THBS1, CCR2
regulation of ex- trinsic apoptotic signaling pathway in absence of ligand	3.54	2.70	8	37	GAS1, IL1A, IL1B, JAK3, MCL1, PF4, TNFRSF10B, CFLAR
leukocyte migra- tion	3.53	5.40	16	80	COL1A1, SIRPA, B4GALT1, HCK, ITGAX, MMP9, CD177, PTPN6, RAC2, SELL, SHC1, STK10, DOCK8, SLC16A3, CD44, CD48

Table 13 – continued from previous page

		20 00		letious	P=0-
regulation of inflammatory response	3.53	7.87	23	112	PIK3AP1, CD55, SBNO2, IL17RA, METRNL, HCK, BIRC3, IL1R1, LYN, MYD88, NFKB1, CFP, PRKCD, PTPN2, BCL6, CFB, CCL5, SELE, NOD2, SLC7A2, TNFAIP3, TNFRSF1B, IER3
chemokine- mediated signaling pathway	3.51	2.03	6	28	CCR1, ACKR1, CXCR2, CCL2, CCR2, CXCR4
regulation of im- munoglobulin me- diated immune re- sponse	3.49	2.04	6	28	FCER1G, PTPN6, BCL6, NOD2, C3, TNFSF13
positive regulation of B cell prolifera- tion	3.49	2.04	6	28	CDKN1A, TNFSF13B, SASH3, PTPRC, BCL6, IRS2
regulation of ex- trinsic apoptotic signaling pathway via death domain receptors	3.49	2.04	6	28	ICAM1, LGALS3, SERPINE1, THBS1, TNFAIP3, CFLAR
lymphocyte home- ostasis	3.45	2.41	7	33	TNFSF13B, CORO1A, HIF1A, JAK3, LYN, PIK3CD, TNFAIP3
regulation of cy- tokine secretion	3.43	2.06	6	29	LRRC32, TNFRSF21, IL6, LYN, TLR8, SRGN
regulation of cell- cell adhesion	3.43	4.52	13	62	ADAM8, HAS2, IL1B, IL1RN, LYN, MYO10, SERPINE2, PRKCD, CCL5, SYK, WNT5A, FERMT3, CD44
response to heat	3.42	2.77	8	38	HSPA6, IL1A, IL6, LYN, OSM, CCL2, THBS1, CD14
positive regulation of cell activation	3.41	14.37	40	197	CD24, ADAM8, CDKN1A, LILRB2, IKZF1, PDPN, TN- FSF13B, CORO1A, MAP3K8, CD55, AIF1, FCER1G, FGR, PYCARD, IL1B, IL4R, IL6, IL6ST, LYN, MYD88, PLEK, SASH3, PTPN6, PTPRC, BCL6, RPS6KA1, CCL2, CCL5, NOD2, SYK, TGFBR2, THBS1, CCR2, VCAM1, WNT5A, IRS2, TNFSF13, CD1D, IL1RL1, CD86
Fc receptor signal- ing pathway	3.37	2.45	7	34	PPAPDC1A, FCGR1B, FCGR2A, FGR, HCK, MYO10, PRKCD
regulation of pro- duction of molecu- lar mediator of im- mune response	3.37	2.10	6	29	IRAK3, IL6, JAK3, BCL6, C10orf54, TNFSF13

Table	13 –	continued	from	previous	page

regulation of re- sponse to stress	3.36	11.44	32	173	IRAK3, DOCK2, FCN1, FGR, LY96, SAMHD1, IFI16, IF- NAR2, IFNGR1, IFNGR2, IRAK1, IRF1, ITGAM, ITGB2, LTF, ARRB2, MYO1F, NFKB2, NFKBIA, TLR8, PLSCR1, PTPN6, NLRC4, RPS6KA1, CLEC7A, TRAF3, SOCS1, SOCS3, CD1D, CD14, CD86, CD37
cellular transi- tion metal ion homeostasis	3.36	4.60	13	63	TCIRG1, SLC39A14, HIF1A, LTF, MF12, MT2A, MYC, SLC11A2, S100A8, S100A9, SLC11A1, TFRC, SCO2
regulation of B cell mediated immunity	3.34	2.12	6	29	FCER1G, PTPN6, BCL6, NOD2, C3, TNFSF13
regulation of glial cell differentiation	3.34	2.12	6	29	TNFRSF21, IL6ST, LIF, SER- PINE2, TLR2, CXCR4
positive regula- tion of tyrosine phosphorylation of STAT protein	3.32	2.48	7	34	CSF1R, HCLS1, IL6, IL6ST, LIF, LYN, CCL5
modification of morphology or physiology of other organism involved in symbiotic inter- action	3.32	2.48	7	34	TNIP1, TLR8, TREM1, CCL4, CCL5, NOD2, TLR2
interaction with host	3.31	5.00	14	69	TCIRG1, TNIP1, IFITM2, CYBA, CYBB, NCF2, NCF4, PTX3, SLC11A1, TAP1, TRIM25, CXCR4, TRIM8, VAMP8
interleukin-2 pro- duction	3.31	2.85	8	39	IL1A, IL1B, SASH3, NOD2, SLC11A1, TNFAIP3, CCR2, CD86
epithelium migra- tion	3.30	7.59	21	104	CTSH, CYP1B1, HBEGF, FAP, VASH1, GREM1, SRPX2, HIF1A, ITGA2, MMP9, PTGS2, ROBO1, S100P, STC1, TGFBR2, THBS1, VEGFA, WNT5A, SH3BGRL3, NRP2, NRP1
positive regulation of peptidyl-tyrosine phosphorylation	3.30	7.22	20	99	CD24, SEMA4D, CSF1R, CSF3, GREM1, HCLS1, ICAM1, IL6, IL6ST, LIF, LYN, ARRB2, OSM, CCL5, NOD2, SYK, VEGFA, NRP1, CD36, CD44
T cell mediated im- munity	3.30	3.94	11	54	CTSC, CTSH, CD55, ICAM1, IL1B, SASH3, PTPRC, RAB27A, C10orf54, NOD2, SLC11A1

Table 13 – continued	from	previous	page
----------------------	------	----------	------

iron ion homeosta-	3.29	4.30	12	59	TCIRG1, HIF1A, LCN2,
sis					LTF, MFI2, MYC, SLC11A2,
					SLC25A37. SLC11A1. SOD2.
					TERC STEAP4
positivo regulation	2 20	5.97	15	77	SEMAAD DDDN COPO1A
positive regulation	5.29	0.57	10		SEMA4D, PDPN, COROIA,
of cell migration					COLIAI, CSFIR, F3, FGR,
					FLT1, HAS2, LYN, MYO1F,
					PDGFRA, PTPRC, FAM110C,
					IRS2
extracellular ma-	3.28	9.85	27	138	COMP. FBLN1. SULF1.
trix organization					FMOD. EGFL6. B4GALT1.
or an organization					EBOIL HAS2 HAS3 TNC
					ICAM1 = ICAM2 = ITCA2
					IDAMI, IDAMIS, ITGA2,
					IIGAM, IIGAX, IIGB2,
					ITGB8, LAMA2, LGALS3,
					NFKB2, TNFRSF11B, SER-
					PINE1, PDGFRA, PLOD2,
					BCL3, THBS1, VCAM1
regulation of loco-	3 26	11 74	32	171	TRIB1 IFITM2 CD300A
motion	0.20	11.11			COL3A1 CVP1B1 DPVSL3
motion					$\begin{array}{c} \text{COLSAL},  \text{CHTIDI},  \text{DTISLS}, \\ \text{CDATA12}  \text{VACU1}  \text{CULE1} \end{array}$
					SPATAIS, VASHI, SULFI,
					GREMI, IGFBP3, ILIRN,
					LAMA2, MMP10, SERPINE2,
					PLAU, PTGER4, PTPN2,
					PTX3, RAC2, ROBO1, NOD2,
					SGK1, SORL1, STAT3, STC1,
					STK10. TIMP1. TRIM25.
					CXCB4 TRIM8 SH3BGBL3
platelet activation	2.02	11.80	20	162	PDPN COL1A1 COL3A1
platelet activation	3.23	11.09	32	105	FOFN, COLIAI, COLJAI,
					FUERIG, GNAID, ILO, IIPR2,
					RHOG, LCP2, LYN, ARRB2,
					SERPINE1, PDGFRA, PF4,
					SERPINA1, SERPINE2,
					PIK3CG, PLEK, PLSCR1,
					APBB1IP, PPBP, SRGN,
					PRKCD, PTPN6, RAC2, SHC1,
					SVK THBS1 TIMP1 VECEA
					EEDMT2 $CD2c$
	0.00	254	_		FERMIS, CD30
glycolytic process	3.22	2.54	1	35	ENOI, HIFIA, HK2, HK3,
					PFKFB3, PFKFB4, PGK1
regulation of cell	3.21	9.59	26	140	TRIB1, CD300A, COL3A1,
migration					CYP1B1, DPYSL3, SPATA13,
Ŭ					VASH1, SULF1, GREM1.
					IGFBP3. IL1RN LAMA2
					MMP10 SERPINE2 PLAU
					$\begin{array}{c} \text{WIMI IO, DERTINEZ, I LAU,} \\ \text{DTCED4 DAC9 NOD9 COP1} \end{array}$
					r i GER4, RAU2, NUD2, SGKI,
					SORLI, STAT3, STC1, STK10,
					TIMP1, CXCR4, SH3BGRL3

					10-
positive regulation of adaptive immune response based on somatic recombina- tion of immune re- ceptors built from immunoglobulin su- perfamily domains	3.21	3.28	9	45	TNFSF13B, FCER1G, IL1B, SASH3, NOD2, SLC11A1, C3, CCR2, TNFSF13
osteoclast differen- tiation	3.21	3.28	9	45	CCR1, CSF1R, SBNO2, SNX10, JUNB, LTF, FAM20C, TFRC, TYROBP
mononuclear cell proliferation	3.21	6.24	17	88	CD300A, DOCK2, LRRC32, TNFRSF21, IRF1, ITGAM, LGALS3, LYN, MNDA, PIK3CG, PRKCD, PTPN6, C10orf54, SLC11A1, CXCR4, LST1, DOCK8
regulation of interleukin-2 pro- duction	3.20	2.55	7	35	IL1A, IL1B, SASH3, NOD2, TN- FAIP3, CCR2, CD86
response to metal ion	3.20	10.43	28	143	PPIF, ALOX5AP, ICAM1, IL1A, IL6, AQP9, JUNB, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, NFKB1, SLC11A2, TN- FRSF11B, PTGS2, S100A8, S100A9, BNIP3, SOD2, THBS1, VCAM1, WNT5A, CD14, CD86, PTGES
cellular response to drug	3.20	2.19	6	30	RNF149, IL1B, MT2A, MYC, SLAMF8, CD69
regulation of type I interferon- mediated signaling pathway	3.20	2.19	6	30	IFNAR2, PTPN2, PTPN6, WNT5A, SOCS1, SOCS3
positive regulation of protein transport	3.19	9.70	26	133	ADAM8, CSF1R, CSF3, FCN1, FGR, CLEC5A, PANX1, CLEC4E, PYCARD, HCLS1, IL1A, IL1B, IL4R, IL6, PT- GER4, PTGS2, NOD2, SORL1, SYK, TLR2, WNT5A, IL18R1, RAB29, IL1RL1, CD14, TN- FSF15
response to oxygen levels	3.18	12.04	32	165	CD24, ADAM8, CDKN1A, PDPN, ADM, LPAR1, HIF1A, ICAM1, IRAK1, ITGA2, ITPR2, NCF2, SLC11A2, ANGPTL4, PLAT, PLAU, PLOD2, DDIT4, AGTRAP, BACH1, PTGS2, CCL2, BNIP3, SOD2, STC1, THBS1, TLR2, UCP2, VCAM1, VEGFA, CXCR4, CPEB4

TRIF-dependent toll-like receptor signaling pathway	3.14	3.72	10	51	LY96, BIRC3, IRAK1, NFKB1, NFKB2, NFKBIA, RPS6KA1, NOD2, TRAF3, CD14
negative regulation of protein process- ing	3.12	3.36	9	46	CSTA, CD55, GAS1, SER- PINE1, SERPINE2, PLAT, THBS1, TIMP1, TIMP3
acute inflammatory response	3.12	2.97	8	42	CD55, F3, B4GALT1, CFP, S100A8, CFB, VCAM1, PTGES
negative regulation of cell motility	3.12	6.79	18	93	TRIB1, CD300A, COL3A1, CYP1B1, DPYSL3, AIF1, VASH1, SULF1, GREM1, IGFBP3, IL1RN, SERPINE1, PTGER4, CCL2, STAT3, STC1, THBS1, TIMP1
response to temper- ature stimulus	3.10	2.24	6	31	ADM, METRNL, ERO1L, ARRB2, NFKBIA, PLAC8
single organism cell adhesion cytokine-mediated signaling pathway	3.07	17.22	27	236	CD24, ADAM8, LILRB2, TNIP1, SEMA4D, OLFM4, PDPN, COL11A1, CSTA, CYP1B1, SRPX2, HAS2, ICAM1, ICAM3, IL1B, IL1RN, ITGAM, ITGAX, ITGB2, LYN, MF12, MYO10, PDGFRA, SERPINE2, PIK3CG, PLEK, PRKCD, PREX1, PTPN6, RAC2, S100A8, S100A9, CCL5, SELE, SELPLG, SHC1, STK10, SYK, VCAM1, WNT5A, VMP1, FERMT3, CD1D, CD44 CD24, CCR1, CSF1R, CSF2RB, CSF3, CSF3R, ACSL1, IL17RA, ACKR1, PYCARD, HIF1A,
					IL1A, IL1B, CXCR2, IL10RA, MYD88, PF4, PRLR, CCL2, TNFRSF1B, TRAF3, CCR2, IL1R2, CXCR4, IL18R1, IL1RL1, OSMR
cellular carbohy- drate catabolic process	3.07	2.26	6	31	GK, HIF1A, DDIT4, STAT3, IER3, MGAM
platelet-derived growth factor re- ceptor signaling pathway	3.07	2.26	6	31	F3, PDGFRA, PLAT, PTPN2, VEGFA, NRP1
negative regulation of cell adhesion	3.07	5.33	14	73	SEMA4D, COL1A1, CYP1B1, TNC, IL1RN, ARHGDIB, MF12, MYO1F, SERPINE1, SERPINE2, PRKCD, PTPRC, BCL6, THBS1
regulation of peptidyl-serine phosphorylation	$3.0\bar{6}$	3.79	10	52	CSF3, HCLS1, IL6, LIF, OSM, DDIT4, BDKRB2, VEGFA, WNT5A, CD44

Table 13 - continued from previous page

toll-like receptor 9 signaling pathway	3.04	3.43	9	47	PIK3AP1, IRAK1, MYD88, NFKB1, NFKB2, NFKBIA, TLR8, RPS6KA1, NOD2
response to me- chanical stimulus	3.04	4.97	13	69	CHI3L1, COL3A1, COL11A1, RCAN1, TNC, IL6, ITGA2, JUNB, SERPINE2, RETN, CCL2, TGFBR2, THBS1
negative regula- tion of phosphorus metabolic process	3.03	13.72	35	188	PPIF, TRIB1, CDKN1A, TNIP1, SEMA4D, IRAK3, CD300A, GREM1, RNF149, PYCARD, BIRC3, IGFBP3, IL1B, IL6, LIF, LYN, MYC, PLEK, P2RY13, ERRFI1, DDIT4, PID1, PRKCD, DNAJC3, PTPN2, PTPN6, PTPRC, BDKRB2, SAMSN1, SORL1, CCR2, SOCS1, SOCS3, GMFG, MVP
regulation of type I interferon produc- tion	3.03	4.60	12	63	PYCARD, IFI16, IRF1, MYD88, NFKB1, NFKB2, NFKBIA, TLR8, TLR2, TN- FAIP3, TRAF3, TRIM25
negative regula- tion of intrinsic apoptotic signaling pathway	3.02	3.06	8	42	PPIF, HIF1A, MCL1, TAF9B, BCL2A1, BDKRB2, SOD2, CD44
B cell mediated im- munity	3.02	5.40	14	74	CD55, FCER1G, MYD88, C1RL, TLR8, PRKCD, PTPN6, BCL3, BCL6, NOD2, C1R, C1S, C3, TNFSF13
toll-like receptor 3 signaling pathway	3.01	4.23	11	58	LY96, BIRC3, IRAK1, NFKB1, NFKB2, NFKBIA, RPS6KA1, NOD2, TNFAIP3, TRAF3, CD14
negative regulation of protein kinase activity	3.00	7.00	18	96	TRIB1, CDKN1A, IRAK3, CD300A, PYCARD, IL1B, IL6, LYN, ERRFI1, PRKCD, DNAJC3, PTPN6, PTPRC, SORL1, SOCS1, SOCS3, GMFG, MVP
type I interferon signaling pathway	2.99	3.87	10	53	IFITM2, GBP2, IFNAR2, IRF1, ISG20, PTPN2, PTPN6, WNT5A, SOCS1, SOCS3
unsaturated fatty acid biosynthetic process	2.99	2.70	7	37	ALOX5, ALOX5AP, FADS3, ELOVL2, PTGS2, SYK, PTGES
negative regulation of MAPK cascade	2.97	4.67	12	64	TNIP1, IRAK3, CD300A, RNF149, IL1B, LIF, LYN, MYC, PRKCD, PTPN2, PTPN6, SORL1
positive regulation of immune effector process	2.97	5.06	13	70	CD300A, FGR, IL1B, IL4R, IL6, LYN, CCL2, STXBP2, SYK, C3, CCR2, TNFSF13, CD86

Table 13 – continued from previous page
-----------------------------------------

cytokine metabolic process	2.97	5.07	13	70	CEBPB, IL1A, IRF1, LTB, NFKB1, TLR8, BCL3, SYK, THBS1, TLR2, CCR2, CD86, TNFSF15
positive regulation of cysteine-type en- dopeptidase activ- ity	2.97	5.47	14	75	CTSH, F3, PYCARD, IFI16, MAP3K5, MYC, SLC11A2, NLRC4, ROBO1, S100A8, S100A9, BID, TNFRSF10B, TNFSF15
Fc-gamma receptor signaling pathway involved in phago- cytosis	2.96	3.50	9	48	PPAPDC1A, FCGR2A, FGR, HCK, ITPR2, LYN, MYO10, PRKCD, SYK
regulation of vesicle-mediated transport	2.96	12.33	31	169	CD300A, DOCK2, FCER1G, FGR, GAS1, GREM1, B4GALT1, PYCARD, HCK, ITGA2, LGALS3, LYN, ARRB2, SERPINE1, PTX3, RAB27A, CCL2, SELE, NOD2, SLC11A1, SORL1, STXBP2, SYK, C3, CCR2, VEGFA, PRAM1, VAMP8, NRP1, CD14, CD36
negative regulation of hormone secre- tion	2.95	2.33	6	32	IL1B, IL6, LIF, PIM3, OSM, UCP2
regulation of antigen receptor- mediated signaling pathway	2.95	2.33	6	32	CD300A, LGALS3, LYN, PTPN2, PTPN6, PTPRC
cellular iron ion homeostasis	2.93	3.14	8	43	TCIRG1, HIF1A, LTF, MF12, MYC, SLC11A2, SLC11A1, TFRC
positive regulation of phospholipase C activity	2.93	3.14	8	43	LPAR1, FLT1, GNA15, ITPR2, PDGFRA, PRKCD, SELE, C5AR1
fatty acid transport	2.93	3.14	8	43	PLIN2, ACSL1, IL1B, BD- KRB2, SYK, THBS1, IRS2, CD36
peptidyl-tyrosine modification	2.93	14.96	37	205	CD24, SEMA4D, CAMKK2, CD300A, CSF1R, CSF3, FGR, FLT1, GREM1, HCK, HCLS1, ICAM1, IL6, IL6ST, ITGB2, JAK3, LIF, LYN, ARRB2, OSM, PDGFRA, ERRFI1, PRKCD, PRLR, PTPN2, PTPN6, CCL5, SAMSN1, NOD2, SHC1, SYK, VEGFA, SOCS1, NRP1, CD36, CD44, MVP
response to type I interferon	2.92	3.94	10	54	IFITM2, GBP2, IFNAR2, IRF1, ISG20, PTPN2, PTPN6, WNT5A, SOCS1, SOCS3

					F-8-
regulation of leuko- cyte activation	2.90	12.50	31	177	CD24, ADAM8, CDKN1A, IKZF1, TNFSF13B, CORO1A, MAP3K8, CD55, AIF1, PY- CARD, IL1B, IL6, IL6ST, MYD88, SASH3, PTPN2, PT- PRC, CCL2, CCL5, NOD2, SLC7A2, TGFBR2, THBS1, VCAM1, WNT5A, PRAM1, IRS2, TNFSF13, CD1D, IL1RL1, CD86
leukocyte activa- tion involved in immune response	2.90	5.95	15	84	ICAM1, IL4R, IL6, JAK3, LCP1, LGALS3, PTGER4, RAB27A, RELB, BCL3, BCL6, SLC11A1, TNFSF13, IL18R1, CD86
immune response- activating cell sur- face receptor signal- ing pathway	2.90	11.31	28	155	CD300A, PPAPDC1A, FCER1G, FCGR2A, FCN1, FGR, TNFRSF21, HCK, ITPR2, LCP2, LGALS3, LYN, MNDA, MYO10, NFKB1, NFKBIA, PIK3CD, PLSCR1, PRKCD, PTPN2, PTPN6, PTPRC, SYK, TLR2, C3AR1, C5AR1, LAT2, THEMIS2
myeloid cell home- ostasis	2.89	4.38	11	60	FCER1G, HCLS1, HIF1A, IL6, LYN, SLC11A2, PTPN2, BCL6, SPI1, VEGFA, PTBP3
erythrocyte differ- entiation	2.89	3.57	9	49	HCLS1, HIF1A, LYN, SLC11A2, PTPN2, BCL6, SPI1, VEGFA, PTBP3
endothelial cell mi- gration	2.88	3.18	8	44	CYP1B1, FAP, VASH1, GREM1, ROBO1, S100P, STC1, SH3BGRL3
activation of im- mune response	2.87	8.85	22	128	CD300A, PPAPDC1A, FCER1G, FCGR2A, FGR, TNFRSF21, ITPR2, LCP2, LGALS3, MNDA, MYO10, PIK3CD, PLSCR1, PRKCD, PTPN2, PTPN6, PTPRC, SYK, C3AR1, C5AR1, LAT2, THEMIS2

			-	
Table 13 –	continued	from	previous	page

	Tuble	10 continue	cu nom p	icvious	Pubc
coagulation	2.87	21.67	52	300	PDPN, HPSE, AMICA1, COL1A1, COL3A1, SIRPA, F3, FCER1G, FGR, MAFF, GNA15, IL6, IRF1, ITGA2, ITGAM, ITGAX, ITGB2, ITPR2, RHOG, LCP2, LYN, ARRB2, NFE2, PF4, SER- PINA1, PIK3CG, PLEK, PLSCR1, TREM1, APBB1IP, PPBP, SRGN, PRKCD, CD177, PTPN6, RAB27A, RAC2, SELE, SELL, SELPLG, SHC1, SYK, TIMP1, VEGFA, TFPI2, DOCK8, FERMT3, PAPSS2, SLC16A3, CD36, CD44, CD48
calcium-mediated signaling	2.86	4.82	12	66	CAMKK2, RCAN1, LMCD1, CXCL8, PLEK, MCTP2, CCL4, SELE, SYK, LAT2, CXCR4, MCTP1
positive regulation of peptidyl-serine phosphorylation	2.85	3.21	8	44	CSF3, HCLS1, IL6, LIF, OSM, VEGFA, WNT5A, CD44
regulation of phos- pholipase C activity	2.85	3.21	8	44	LPAR1, FLT1, GNA15, ITPR2, PDGFRA, PRKCD, SELE, C5AR1
response to nutrient	2.85	7.30	18	100	COL1A1, CYBB, ABCA1, ACSL1, TNC, ITGA2, TN- FRSF11B, PTGS2, CCL2, NOD2, SOD2, SPP1, STC1, TGFBR2, VCAM1, VDR, TRIM25, KYNU
response to hypoxia	2.83	11.09	27	152	CD24, ADAM8, ADM, HIF1A, ICAM1, IRAK1, ITGA2, ITPR2, SLC11A2, ANGPTL4, PLAT, PLAU, PLOD2, DDIT4, AGTRAP, BACH1, PTGS2, CCL2, BNIP3, SOD2, STC1, THBS1, TLR2, UCP2, VCAM1, VEGFA, CXCR4
reactive oxygen species metabolic process	2.82	3.23	8	45	CYP1B1, BIRC3, NCF2, DDIT4, PREX1, BNIP3, SYK, IER3
regulation of cy- tokine production	2.80	9.04	22	132	CD24, ADAM8, LILRB2, CEBPB, FGR, CLEC5A, IL17RA, LRRC32, CLEC4E, HILPDA, BIRC3, LTB, LYN, SRGN, PTGER4, BCL6, C10orf54, SLC11A1, SYK, IL18R1, CD86, TNFSF15

regulation of im- mune response	2.79	15.92	38	240	CD24, CDKN1A, LILRB2, CD300A, AMICA1, CTSH, HBEGF, PPAPDC1A, FCGR1B, FCGR2A, FCGR2B, TNFRSF21, ICAM1, ICAM3, ITPR2, LCP2, LGALS3, MNDA, MYO10, C1RL, PDGFRA, PIK3CD, PRKCD, SELL, SHC1, STXBP2, SYK, C1R, C1S, C3AR1, C5AR1, TYROBP, VCAM1, LAT2, PRAM1, SPPL2A, IRS2, THEMIS2
extrinsic apoptotic signaling pathway via death domain receptors	2.77	3.28	8	45	ICAM1, LGALS3, SERPINE1, BID, THBS1, TNFAIP3, TN- FRSF10B, CFLAR
odontogenesis of dentin-containing tooth	2.77	3.28	8	45	FST, ADM, CSF3R, TNC, TN- FRSF11B, PDGFRA, FAM20C, RUNX2
carbohydrate biosynthetic pro- cess	2.75	7.08	17	97	ENO1, B4GALT1, NR3C1, HAS2, HAS3, IL6, NFKB1, CHST11, CHST15, PGD, PGK1, PLEK, PTPN2, UGP2, B3GNT5, IRS2, GFPT2
cellular glucose homeostasis	2.75	3.72	9	51	CYBA, HIF1A, HK2, HK3, ICAM1, PIM3, UCP2, VCAM1, IRS2
cellular carbohy- drate metabolic process	2.75	10.07	24	138	B4GALT1, GK, NR3C1, HAS2, HAS3, HIF1A, HK2, HK3, IGFBP3, IL6, IL6ST, PFKFB3, PFKFB4, PGD, PLEK, DDIT4, PTPN2, STAT3, UGP2, B3GNT5, DGAT2, IRS2, IER3, MGAM
leukocyte differen- tiation	2.74	13.98	33	194	CSF1R, CSF3, DOCK2, SBNO2, SNX10, IFI16, IRF1, ITGAM, JAK3, JUNB, LTF, LYN, MMP9, MT1G, MYC, PIK3CD, FAM20C, PTGER4, PREX1, PTPN2, PTPN6, PT- PRC, RELB, BCL3, BCL6, SPI1, TFRC, TYROBP, VCAM1, VEGFA, RUNX2, IL18R1, CD1D
collagen catabolic process	2.73	4.16	10	57	COL1A1, COL3A1, COL5A2, COL11A1, CTSS, FAP, MMP9, MMP10, MMP19, ADAMTS2
positive regulation of peptidase activ- ity	2.73	6.27	15	86	CTSH, F3, FBLN1, PY- CARD, IFI16, MAP3K5, MYC, SLC11A2, NLRC4, ROBO1, S100A8, S100A9, BID, TN- FRSF10B, TNFSF15

Table 13 – continued from previous	page	

negative regulation of response to wounding	2.72	4.60	11	63	METRNL, NFKB1, SERPINE1, PRKCD, PTGER4, PTPN2, NOD2, SPP1, TNFAIP3, TN-
endothelium devel-	2.72	2.92	7	40	FRSF1B, IER3 S1PR3, KDM6B, GJA4,
opment					ICAM1, MYD88, STC1, NRP1
negative regulation of ion transport	2.72	2.92	7	40	LILRB2, ICAM1, IL1RN, SER- PINE2, PTGS2, THBS1, IRS2
mammary gland epithelium develop- ment	2.72	2.92	7	40	CEBPB, CSF1R, NR3C1, HIF1A, ROBO1, VDR, WNT5A
lymphocyte activa- tion	2.72	14.08	33	201	CD300A, AMICA1, LRRC32, TNFRSF21, ICAM1, IRF1, ITGAM, JAK3, LCP1, MNDA, PIK3CD, PIK3CG, PRKCD, PRLR, PTGER4, PREX1, PTPN2, RAB27A, RELB, BCL3, SAMSN1, C10orf54, CLEC7A, SLC11A1, SPI1, TN- FAIP3, LAT2, CXCR4, LST1, RUNX2, IL18R1, SKAP2, CD48
positive regulation of lymphocyte acti- vation	2.71	9.30	22	129	CD24, ADAM8, LILRB2, IKZF1, CORO1A, MAP3K8, CD55, AIF1, PYCARD, IL1B, IL4R, IL6ST, LYN, MYD88, PTPN6, CCL2, CCL5, TGFBR2, CCR2, VCAM1, CD1D, CD86
regulation of pro- tein maturation	2.71	7.59	18	104	ADAM8, TRIB1, CTSC, CSTA, CD55, GAS1, IL1B, MFI2, SERPINE1, CFP, SERPINE2, PLAT, CFB, THBS1, TIMP1, TIMP3, TNFRSF1B, C3
bone development	2.70	5.47	13	75	SEMA4D, COL1A1, COMP, SULF1, GREM1, HAS2, LTF, PTGER4, PTPRC, STC1, THBS1, RUNX2, PAPSS2
immunoglobulin production	2.70	3.36	8	46	TNFSF13B, IL6, SASH3, PT- PRC, BCL6, NOD2, TNFSF13, CD37
regulation of fat cell differentiation	2.70	3.36	8	46	CEBPB, METRNL, IL6, PTGS2, SOD2, WNT5A, ZC3H12A, MEDAG
multicellular or- ganismal macro- molecule metabolic process	2.70	5.91	14	81	COL1A1, COL3A1, COL5A2, COL11A1, CTSS, FAP, HIF1A, IL6, ITGA2, MMP9, MMP10, MMP19, RETN, ADAMTS2
positive regulation of phospholipase activity	2.69	3.79	9	52	LPAR1, FLT1, GNA15, ITPR2, PDGFRA, PRKCD, CCL5, SELE, C5AR1

	Tuble	10 continue	ea nom p	cvious	P480
regulation of sequence-specific DNA binding tran- scription factor activity	2.69	13.79	32	189	ADAM8, TRIB1, IRAK3, CYP1B1, PYCARD, HCK, ICAM1, IL1B, IL6, IRAK1, LTF, ARRB2, MYD88, NFKB1, NFKB2, NFKBIA, NLRC4, S100A8, S100A9, S100A12, NOD2, SGK1, TLR2, TN- FAIP3, TRAF3, VEGFA, WNT5A, TRIM25, ZC3H12A, TRIM8, BHLHE40, CFLAR
positive regulation of cell adhesion	2.68	7.66	18	105	ADAM8, OLFM4, EGFL6, HAS2, IL1B, ITGA2, MYO10, PREX1, PTPN6, CCL5, SPP1, SYK, TGM2, THBS1, VEGFA, WNT5A, CD36, CD44
negative regulation of growth	2.68	8.97	21	123	CDKN1A, ENO1, GAS1, HIF1A, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, MYD88, PLAC8, SERPINE2, BCL6, NOD2, SPP1, TLR2, WNT5A, NRP1, CD36
regulation of en- dopeptidase activ- ity	2.67	5.96	14	83	CTSH, F3, PYCARD, BIRC3, MAP3K5, MYC, SLC11A2, NLRC4, ROBO1, S100A8, S100A9, BID, TNFRSF10B, TNFSF15
T cell differentia- tion	2.66	4.25	10	59	DOCK2, PIK3CD, PTGER4, PREX1, PTPRC, RELB, BCL3, RUNX2, IL18R1, CD1D
positive regula- tion of protein serine/threonine kinase activity	2.66	11.24	26	154	CD24, ADAM8, CHI3L1, CSF1R, LPAR1, ACSL1, FLT1, FPR1, IL1B, IL1RN, IRAK1, LTF, MAP3K5, PIK3CG, PROK2, S100A12, NOD2, SHC1, SYK, THBS1, C5AR1, VEGFA, WNT5A, CXCR4, TNFRSF10B, TNFSF15
innate immune re- sponse	2.66	19.77	45	294	CDKN1A, CORO1A, CSF1R, CYBA, CYBB, CD55, HBEGF, PPAPDC1A, FCER1G, FCGR2A, CLEC5A, PANX1, ITPR2, JAK3, LCN2, LCP2, LGALS3, MAP3K5, MYO10, NCF2, CLEC4A, C1RL, PDGFRA, CFP, PIK3CD, PIK3CG, TREM1, PTX3, RAB27A, S100A8, S100A9, S100A12, CFB, SHC1, SYK, C1R, C1S, C3, CCR2, TYROBP, LAT2, TRIM25, TRIM8, IRS2, PSTPIP1

Table 12 sentimeral	£		
Table 13 – continued	trom	previous page	

			<u>, a</u>		P=0-
regulation of ep- ithelial cell prolifer- ation	2.65	9.92	23	247	LRG1, AMICA1, CYBA, F3, VASH1, SULF1, GAS1, B4GALT1, GLUL, HIF1A, IL6, MYC, PLA2G2A, ROBO1, CCL2, NOD2, THBS1, C5AR1, VDR, VEGFA, WNT5A, NRP2, NRP1
lishment of protein localization	2.03	18.02	41	241	ADAMS, CDKNIA, CSFIR, CSF3, FCN1, FGR, SPIDR, CLEC5A, PANX1, LRRC32, CLEC4E, TNFRSF21, PY- CARD, HCLS1, IL1A, IL1B, IL4R, IL6, RHOG, LCP1, LYN, NFKBIA, NFKBIE, TLR8, PID1, SRGN, PTGER4, PTGS2, BCL3, BID, NOD2, SORL1, SYK, TLR2, WNT5A, IL18R1, RAB29, IL1RL1, CD14, CD36, TNFSF15
female gonad devel- opment	2.63	3.43	8	47	FST, ICAM1, ARRB2, MMP19, PDGFRA, RETN, VEGFA, ADAMTS1
myelination	2.63	3.43	8	47	LPAR1, EGR2, TNFRSF21, LAMA2, MBP, TLR2, CXCR4, CNTNAP1
signal transduction in absence of ligand	2.63	3.87	9	53	GAS1, IL1A, IL1B, JAK3, MCL1, PF4, BCL2A1, TN- FRSF10B, CFLAR
unsaturated fatty acid metabolic process	2.62	4.74	11	65	PDPN, CYP1B1, ACSL1, ALOX5, ALOX5AP, FADS3, ELOVL2, PTGS2, SYK, TLR2, PTGES
cellular response to decreased oxygen levels	2.62	4.74	11	65	ADAM8, HIF1A, ICAM1, IRAK1, SLC11A2, BACH1, PTGS2, BNIP3, STC1, VEGFA, CPEB4
intrinsic apoptotic signaling pathway	2.62	6.49	15	90	CD24, CDKN1A, PYCARD, ERO1L, IFI16, LYN, DDIT4, BCL3, S100A8, S100A9, BID, BNIP3, TNFRSF1B, TN- FRSF10B, IER3
response to monosaccharide	2.62	6.06	14	83	CYBA, GLUL, HIF1A, ICAM1, ITGA2, PIM3, NCF2, PTGS2, SOD2, TGFBR2, THBS1, UCP2, VCAM1, IRS2
regulation of T cell differentiation	2.62	5.62	13	77	ADAM8, LILRB2, IKZF1, IL4R, IL6, IRF1, JAK3, SASH3, PTPN2, BCL6, SYK, TGFBR2, CD86
positive regulation of ERK1 and ERK2 cascade	2.62	5.62	13	77	CHI3L1, CCR1, CSF1R, PY- CARD, ICAM1, IL6, ARRB2, PDGFRA, NOD2, C5AR1, VEGFA, NRP1, CD44

Table 13 – continued from previous page	

regulation of MAP	2.60	11.89	27	163	CD24, ADAM8, TRIB1, IRAK3,
kinase activity					CD300A, LPAR1, FLT1, FPR1,
					IL1B. IL1RN. IRAK1. LYN.
					MAP3K5 PIK3CC PRKCD
					DTDNc $DDOV2$ $C100A12$
					PIPNO, PROK2, SIOUAI2,
					NOD2, SHC1, SORLI, SYK,
					THBS1, C5AR1, VEGFA,
					WNT5A, CXCR4
tissue remodeling	2.60	4.78	11	66	CTHRC1. CSF1R. GREM1.
0					HIF1A IL6 LIF TNFRSF11B
					$\mathbf{D} \mathbf{A} \mathbf{C} 2 \mathbf{T} \mathbf{C} \mathbf{M} 2 \mathbf{T} \mathbf{N} \mathbf{F} \mathbf{A} \mathbf{D} 2 \mathbf{C} \mathbf{C} \mathbf{D} 2$
··· 1 /·	0.00	9.40	0	10	AMIGAL CAGL DAGALEL
positive regulation	2.60	3.46	8	48	AMICAI, GASI, B4GALITI,
of epithelial cell					GLUL, IL6, MYC, NOD2,
proliferation					C5AR1
vasculature devel-	2.59	15.55	35	221	ADAM8, PDPN, HPSE,
opment					COL1A1 COL3A1 TYMP
opinent					$\mathbf{FL}_{2}$ $\mathbf{CDFM}_{1}$ $\mathbf{P}_{4}\mathbf{CALT}_{1}$
					ELKS, GREMI, D4GALII,
					GJA4, ANPEP, HAS2, CACL8,
					ITGB8, JUNB, LIF, LOX,
					MMP19, NFE2, PDGFRA,
					PIK3CG, ERRFI1, PROK2,
					BOBO1 SAT1 CEACAM1
					SHC1 SPI1 SVK TNF $\Delta$ IP2
					CVCD4 $ZC2U124$ NDD2
					NRP2, NRP2,
					NRPI, SOCS3
activation of	2.58	6.13	14	84	ADAM8, LPAR1, FPR1, IL1B,
MAPK activity					IRAK1, MAP3K5, PROK2,
MAPK activity					IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1,
MAPK activity					IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1 WNT5A CXCR4
MAPK activity	2.57	5.95	10	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4
MAPK activity regulation of pro-	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1,
MAPK activity regulation of pro- tein import into nu-	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE,
MAPK activity regulation of pro- tein import into nu- cleus	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1,
MAPK activity regulation of pro- tein import into nu- cleus	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop-	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, IAK3, ICALS3
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ADD2, MCL1, OCM, COCA
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3.
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSE10B, NRP1, CELAB
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IEP2, CD44
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway	2.57	5.25	12	72	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion	2.57	5.25	12 33 10	72 202 60	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport	2.57 2.57 2.57	5.25	12 33 10	72 202 60	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport	2.57	5.25	12 33 10	72 202 60	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37, SLC11A1, TFRC, STEAP4,
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport	2.57 2.57 2.57	5.25	12 33 10	72 202 60	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37, SLC11A1, TFRC, STEAP4, SCO2
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport coenzyme biosym	2.57 2.57 2.57 2.57	5.25	12 33 10	72 202 60	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37, SLC11A1, TFRC, STEAP4, SCO2
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport coenzyme biosyn- thatia process	2.57 2.57 2.57 2.57 2.56	5.25 14.74 4.38 3.50	12 33 10 8	72 202 60 48	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37, SLC11A1, TFRC, STEAP4, SCO2 NAMPT, MTHFD2, ACSL1, CCH1, FLOVIC2, NADY
MAPK activity regulation of pro- tein import into nu- cleus regulation of apop- totic signaling pathway transition metal ion transport coenzyme biosyn- thetic process	2.57 2.57 2.57 2.57 2.56	5.25 14.74 4.38 3.50	12 33 10 8	72 202 60 48	IRAK1, MAP3K5, PROK2, NOD2, SHC1, SYK, THBS1, C5AR1, WNT5A, CXCR4 CDKN1A, CSF3, HCLS1, IL1B, IL6, NFKBIA, NFKBIE, PTGS2, BCL3, TLR2, IL18R1, CD36 PPIF, CTSC, CTSH, GAS1, PYCARD, HIF1A, ICAM1, IL1A, IL1B, JAK3, LGALS3, ARRB2, MCL1, OSM, G0S2, SERPINE1, TAF9B, PF4, PRKCD, BCL2A1, BDKRB2, S100A8, S100A9, BID, BNIP3, SOD2, THBS1, TNFAIP3, TNFRSF10B, NRP1, CFLAR, IER3, CD44 TCIRG1, SLC39A14, LTF, MF12, SLC11A2, SLC25A37, SLC11A1, TFRC, STEAP4, SCO2 NAMPT, MTHFD2, ACSL1, GCH1, ELOVL2, NADK, DNW, UND

	Tuble	10 continu	cu nom p	i c vious	puge
modification of	2.56	3.50	8	48	TNIP1, TLR8, TREM1,
morphology or					S100A12, CCL4, CCL5, NOD2,
physiology of other					TLR2
organism	2 7 2			10	
positive regulation	2.56	3.50	8	48	CCR1, MCHR1, LGALS3,
of calcium ion					ARRB2, CCL2, CCL4, CCL5,
transport			1.0	100	STCI
regulation of	2.56	7.95	18	109	CTSH, F3, PYCARD, IL6,
cysteine-type					MAP3K5, MYC, SLC11A2,
endopeptidase ac-					NLRC4, ROBOI, RPS6KAI,
tivity involved in					S100A8, S100A9, BID, THBS1,
apoptotic process					VEGFA, TNFRSF10B, CD44,
	2 5 6		10	101	TNFSF15
angiogenesis	2.56	7.04	16	101	ADAM8, TYMP, ELK3, AN-
					PEP, IL6, CXCL8, MMP19,
					PIK3CG, PROK2, SATI, CEA-
					CAMI, SHCI, SYK, TNFAIP2,
•.• 1	0.55	7.00	10	07	ZC3H12A, NRP2
positive regula-	2.55	1.08	10	97	LPARI, BIRU3, ILIB, IRAKI,
tion of I-kappab					L1F, MYD88, S100A4,
кinase/NF-карраВ					TOMATZ, SECTMI, NOD2,
signanng					$\begin{array}{cccc} 1 \text{ GM2}, & 1 \text{ GM2}, & 1 \text{ GM0}, \\ \text{TMEDSE10D} & \text{CELAD} & \text{CD26} \end{array}$
maintanance of la	9 55	0.24		190	DI INP ADCA1 EDN1
maintenance of 10-	2.55	9.04	21	120	$\begin{array}{ccc} \mathbf{F} \mathbf{L} \mathbf{I} \mathbf{N} 2, & \mathbf{A} \mathbf{D} \mathbf{C} \mathbf{A} \mathbf{I}, & \mathbf{F} \mathbf{D} \mathbf{N} \mathbf{I}, \\ \mathbf{H} \mathbf{I} \mathbf{D} \mathbf{D} \mathbf{A} & \mathbf{F} \mathbf{D} \mathbf{O} \mathbf{I} \mathbf{I} & \mathbf{I} 1 \mathbf{D} & \mathbf{I} \mathbf{G} \end{array}$
cation					NEVDA, EROIL, ILID, ILO,
					SDCN DTDN9 DTDDC DCI 9
					ShGN, FIFN2, FIFNC, BOLS, S100A8 S100A0 SOBL C3
					7C3H12A DCAT2 CD36
defense response to	2 55	0.34		128	IFITM2 DOCK2 SAMHD1
virus	2.00	9.04	21	120	PVCARD HCK BIBC3 IFI16
VII US					$\begin{array}{c} 1 \text{ ICARD}, \text{ IICR}, \text{ DIRCS}, \text{ IIII0}, \\ 1 \text{ II } 6 \text{ IBE1} \text{ ISC20} \text{ TI B8} \end{array}$
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					PTPRC BNIP3 TNFAIP3
					TRAF3 TRIM25 CD86 CD37
cell-type specific	2 55	15.30	34	211	ADAM8 CEBPB FAP
apoptotic process	2.00	10.00	94	211	FCER1G CLEC5A NB3C1
apoptone process					HCLS1 HIF1A ICAM1 IL6
					IAK3 LGALS3 LVN ABB2
					MCL1 MYC NCF2 SEB-
					PINE1 ANGPTL4 PIK3CG
					BCL6. CCL5. NOD2 BNIP3
					SOD2. TGFBR2 THBS1
					TNFAIP3. C5AR1. WNT5A
					CPEB4, DOCK8. IRS2. NRP1
		1	1	1	,

Table 13 - continued from previous page

		10 00110110			
regulation of cel-	2.55	12.04	27	176	TRIBI, CD300A, COL3A1,
lular component					CYP1B1, DPYSL3, SPATA13,
movement					VASH1. SULF1. GREM1.
					B4GALT1 IGFBP3 IL1BN
					IAMA9 MMD10 SEDDINE9
					DI ALL DECEDA DACO
					PLAU, PIGER4, RAC2,
					NOD2, SGK1, SORL1, STAT3,
					STC1, STK10, TIMP1, CXCR4,
					SH3BGRL3
protein maturation	2.54	8.45	19	118	CTSH. F3. ANPEP. PYCARD.
F		0.10			EBOIL IFI16 MAP3K5 MME
					SIC11A2 SPCN NI PC4
					DODO1 CIONA CIONA
					ROBOI, SI00A8, SI00A9,
					BID, SORL1, TNFRSF10B,
					ADAMTS2, TNFSF15
response to purine-	2.54	5.76	13	79	COL1A1, EGR2, PANX1, IL1B,
containing com-					IL6, AQP9, ITPR2, JUNB,
pound					MMP19, PLAT, PTGS2, SELL,
Pound					STC1
positivo regulation	2 52	0.85		125	CD24 CD52 CCB1 ADM
	2.00	9.00	22	100	CD24, $CD32$ , $CCR1$ , $ADM$ , $CD55$
of cytosolic calcium					CD55, LPARI, SIPR3,
ion concentration					GNA15, MCHR1, ERO1L,
					LYN, PDGFRA, PIK3CG,
					PTPN6, PTPRC, PROK2, BD-
					KRB2, TGM2, C3AR1, C5AR1,
					CCB2 CXCB4
negative regulation	2 53	5 33	12	73	IBAK3 METRNL IFI16
of defense regulation	2.00	0.00	12	10	ADDD9 NEVD1 DDVCD
of defense response					$\begin{array}{ccc} \text{ARRD2}, & \text{NFRD1}, & \text{IRROD}, \\ \text{DTCED} & \text{DTDN0} & \text{NOD0} \end{array}$
					PIGER4, PIPN2, NOD2,
					TNFAIP3, TNFRSF1B, IER3
regulation of ossifi-	2.52	7.15	16	98	SEMA4D, CEBPB, CTHRC1,
cation					CCR1, EGR2, GREM1, HIF1A,
					IL6, IL6ST, LTF, NFE2, SRGN,
					FAM20C, PTGER4, WNT5A,
					BUNX2
loukoarto modiatod	9.51	4.01	0	55	CTSC CTSH ICAM1 APPR2
ieukocyte mediated	2.01	4.01	3	- 55	TDEM1 $DTDMC$ $DTDDC$
cytotoxicity					IREMI, PIPNO, PIPRO,
					RAB27A, STXBP2
development of pri-	2.50	3.57	8	49	FST, ICAM1, ARRB2, MMP19,
mary female sexual					PDGFRA, RETN, VEGFA,
characteristics					ADAMTS1
response to	2.49	5.40	12	74	COL1A1, EGR2, PANX1, IL1B,
organophospho-		0.10			AOP9 ITPR2 JUNB MMP19
rug					$\mathbf{D}$ $\mathbf{A}$ $\mathbf{T}$ $\mathbf{D}$ $\mathbf{T}$ $\mathbf{C}$ $\mathbf{S}$ $\mathbf{S}$ $\mathbf{T}$ $\mathbf{C}$ $\mathbf{I}$
hland an analation	2.40	0.07		149	AMICAL CIDDA ECD MAEE
blood coagulation	2.49	9.97		145	AMICAL SIGRA, FGR, MAFF,
					IRF1, ITGA2, ITGAM, IT-
					GAX, ITGB2, NFE2, TREM1,
					CD177, RAB27A, SELE, SELL,
					SELPLG, TFPI2, DOCK8,
					PAPSS2. SLC16A3. CD44
					CD48
	<u> </u>				0.140

T 1 1 1 0		~		
Table 13 –	continued	trom	previous	page

					P-0-
extracellular ma-	2.48	6.79	15	93	ADAM8, COL1A1, COL3A1,
trix disassembly					COL5A2, COL11A1, CTSS,
					FAP, FBN1, MF12, MMP9,
					MMP10, MMP19, SPP1,
					TIMP1, CD44
protein localization	2.48	6.79	15	93	CDKN1A, COL1A1, CSF3,
to nucleus					HCLS1, IL1B, IL6, LIF, NFK-
					BIA, NFKBIE, PTGS2, BCL3,
					TLR2, RASSF5, IL18R1, CD36
negative regulation	2.48	13.79	30	189	TRIB1, CDKN1A, SEMA4D,
of protein modifica-					IRAK3, CD300A, GREM1,
tion process					PYCARD, IGFBP3, IL1B, IL6,
r r					LYN, ARRB2, ERRFI1, DDIT4,
					PID1. PRKCD. DNAJC3.
					PSMB9 PTPN2 PTPN6
					PTPRC BDKBB2 SAMSN1
					SOBLI SPII TNEAIP3
					SOLLI, SIII, INFAILS,
	9.49	10 51	0.0	144	OTCH CVD1D1 HDECE EAD
ameboldal cell mi-	2.48	10.51	23	144	VACULE COPINI, HEEGF, FAP,
gration					VASH1, GREM1, SRPX2,
					HIF1A, ITGA2, MMP9,
					PTGS2, ROBO1, S100P, STC1,
					TGFBR2, THBS1, TIMP1,
					VEGFA, WNT5A, CXCR4,
					SH3BGRL3, NRP2, NRP1
divalent inorganic	2.46	14.81	32	203	CD24, CD52, CCR1, ADM,
cation homeostasis					CD55, LPAR1, S1PR3,
					SLC39A14, GNA15, MCHR1,
					ERO1L, LYN, PDGFRA,
					PIK3CG, CCDC109B, PTPN6,
					PTPRC, PROK2, BDKRB2,
					S100A8, S100A9, CCL2, CCL5,
					CCL8, SLC11A1, STC1, TGM2,
					C3AR1. C5AR1. CCR2. VDR.
					CXCR4
immune effector	2 46	4 97	11	74	PPAPDC1A, FCGR2A, SBNO2
process		1.01			ITPB2 LCP1 MYO10 PT-
process					GEB4 PTX3 BELB TYBOBP
					[I] 18R1
rogulation of actin	9.45	5.47	19	75	ARPCIR COROIA CSF2 DV
regulation of actin	2.40	0.47	12	10	CADD HCK HCI S1 ICAM1
polymerization or					DIEV DEVCE DEV1
depolymerization					PLEK, PKKUD, PREAI,
1	0.45		10		CAPG, SH3BGRL3
biomineral tissue	2.45	5.47	12	75	CCRI, COLIAI, SBNO2,
development					GREM1, HIF1A, LTF, ASGR2,
					NFE2, SRGN, FAM20C,
					PTGS2, SPP1
fat cell differentia-	$2.4\overline{5}$	$4.5\overline{5}$	10	63	EGR2, IL6, RETN, $SOD2$ ,
tion					WNT5A, STEAP4, ZC3H12A,
					MEDAG, SOCS1, CREB5

[			<b>!</b>		
phosphatidylinositol- mediated signaling	2.44	7.81	17	107	CDKN1A, SEMA4D, PIK3AP1, CSF1R, CSF3, HBEGF, FGR, FLT1, HCLS1, PDGFRA, SER- PINE2, PIK3CD, PIK3CG, PTPN6, CCL5, IRS2, CD86
morphogenesis of a branching epithelium	2.44	8.76	19	120	ADM, CTSH, RDH10, FLT1, SULF1, B4GALT1, TNC, IL6, MYC, SPI1, TGFBR2, TGM2, VDR, VEGFA, WNT5A, CXCR4, NRP1, SOCS3, CD44
positive regulation of cell death	2.43	16.42	35	225	ADAM8, CDKN1A, FGD4, ADM, CYP1B1, LPAR1, ALDH1A3, PHLDA1, B4GALT1, NR3C1, PYCARD, HP, IGFBP3, IL6, JAK3, LYN, ARRB2, MAP3K5, MMP9, MNDA, NCF2, ARHGEF3, DDIT4, PTGS2, NLRC4, BCL6, CCL5, BID, BNIP3, TGM2, THBS1, UCP2, VDR, WNT5A, FGD3
metal ion home- ostasis	2.43	21.30	45	292	CD24, TCIRG1, CD52, CCR1, ADM, CD55, LPAR1, S1PR3, SLC39A14, GNA15, MCHR1, ERO1L, HIF1A, LCN2, LTF, LYN, MFI2, MT2A, MYC, SLC11A2, SLC25A37, PDGFRA, PIK3CG, CCDC109B, PTPN6, PTPRC, PROK2, BDKRB2, S100A8, S100A9, CCL2, CCL5, CCL8, SLC11A1, SOD2, STC1, TFRC, TGM2, C3AR1, C5AR1, CCR2, VDR, CXCR4, STEAP4, SCO2
cellular calcium ion homeostasis	2.43	13.06	28	179	CD24, CD52, CCR1, ADM, CD55, LPAR1, S1PR3, GNA15, MCHR1, ERO1L, LYN, PDGFRA, PIK3CG, CCDC109B, PTPN6, PTPRC, PROK2, BDKRB2, CCL2, CCL5, CCL8, STC1, TGM2, C3AR1, C5AR1, CCR2, VDR, CXCR4
positive regulation of Rho GTPase ac- tivity	2.43	5.98	13	82	SEMA4D, FGD4, DOCK2, SPATA13, ARHGAP26, ICAM1, RHOG, ARHGEF3, ERRFI1, PREX1, SH3BGRL3, FGD3, DOCK4
cellular response to hypoxia	2.42	4.60	10	63	ADAM8, HIF1A, ICAM1, IRAK1, SLC11A2, BACH1, PTGS2, BNIP3, STC1, VEGFA

	Таріе	10 continu		1011043	puBc
tissue homeostasis	2.42	7.88	17	108	ADAM8, CORO1A, SERPINA3, CSF1R, CTSH, ITGA2, LTF, LYZ, TNFRSF11B, SASH3, RAC2, NOD2, SPP1, SYK, TFRC, TNFAIP3, VEGFA
regulation of Rho protein signal transduction	2.42	7.88	17	108	SEMA4D, FGD4, COL3A1, DOCK2, ABCA1, LPAR1, SPATA13, ARHGAP26, ICAM1, RHOG, ARHGEF3, ERRFI1, PREX1, BCL6, SH3BGRL3, FGD3, DOCK4
cellular cation homeostasis	2.42	19.92	42	273	CD24, TCIRG1, CD52, CCR1, ADM, CD55, LPAR1, S1PR3, SLC39A14, GNA15, MCHR1, ERO1L, HIF1A, LTF, LYN, MF12, MT2A, MYC, SLC11A2, PDGFRA, PIK3CG, CCDC109B, SLAMF8, PTPN6, PTPRC, PROK2, BDKRB2, S100A8, S100A9, CCL2, CCL5, CCL8, SLC11A1, STC1, TFRC, TGM2, C3AR1, C5AR1, CCR2, VDR, CXCR4, SCO2
regulation of viral process	2.41	5.54	12	76	TNIP1, IFITM2, IFI16, CXCL8, ISG20, PLSCR1, PTX3, CCL4, CCL5, TAP1, TRIM25, TRIM8
female sex differen- tiation	2.40	4.16	9	57	FST, ICAM1, ARRB2, MMP19, PDGFRA, RETN, VEGFA, WNT5A, ADAMTS1
negative regulation of inflammatory re- sponse	2.40	4.16	9	57	METRNL, NFKB1, PRKCD, PTGER4, PTPN2, NOD2, TN- FAIP3, TNFRSF1B, IER3
cofactor biosyn- thetic process	2.40	4.16	9	57	NAMPT, MTHFD2, ACSL1, GCH1, SLC11A2, ELOVL2, NADK, PDXK, KYNU
positive regulation of lipase activity	2.40	4.16	9	57	LPAR1, FLT1, GNA15, ITPR2, PDGFRA, PRKCD, CCL5, SELE, C5AR1
negative regula- tion of protein serine/threonine kinase activity	2.40	4.16	9	57	CDKN1A, IRAK3, CD300A, PYCARD, IL1B, LYN, PRKCD, PTPN6, SORL1
negative regulation of multicellular or- ganismal process	2.40	14.64	31	203	CD24, IRAK3, CCR1, ADM, CYBA, GREM1, TNFRSF21, PYCARD, HIF1A, IL6, JAK3, LTF, ARRB2, NFE2, NFKB1, TNFRSF11B, PLAC8, PIK3CG, SRGN, PTGS2, BCL6, C10orf54, NOD2, SLC11A1, TGFBR2, TLR2, TNFAIP3, TRAF3, TRIM25, ZC3H12A, IL1RL1

regulation of leuko- cyte mediated im- munity	2.39	5.11	11	71	ICAM1, IL1B, JAK3, ARRB2, SASH3, PTPN6, PTPRC, BCL6, C10orf54, NOD2, TN- FSF13
regulation of apop- totic process	2.38	18.63	39	274	CDKN1A, SEMA4D, CEBPB, COMP, EGR2, FAP, FCER1G, CLEC5A, HCK, HCLS1, BIRC3, IL1RN, IL6ST, IRAK1, LTF, PIM3, MYD88, NFKB1, NFK- BIA, CHST11, SERPINB2, PLAC8, PIK3CG, PRLR, PSMB9, BCL3, PROK2, CCL2, NOD2, SGK1, TIMP1, TRAF3, C5AR1, UCP2, CPEB4, DOCK8, IRS2, TNFRSF10D, SOCS3
actin filament poly- merization	2.36	5.18	11	71	ARPC1B, CORO1A, CSF3, AIF1, PYCARD, HCK, HCLS1, ICAM1, PRKCD, PREX1, CAPG
apoptotic mito- chondrial changes	2.36	4.23	9	58	PPIF, PYCARD, HK2, ARRB2, MCL1, BID, BNIP3, SOD2, IER3
regulation of phos- pholipase activity	2.36	4.23	9	58	LPAR1, FLT1, GNA15, ITPR2, PDGFRA, PRKCD, CCL5, SELE, C5AR1
regulation of re- sponse to DNA damage stimulus	2.36	4.23	9	58	PPP4R2, SPIDR, MCL1, MYC, NPAS2, TAF9B, PRKCD, IER3, CD44
regulation of im- mune effector pro- cess	2.35	4.22	9	60	DOCK2, HCK, BIRC3, ICAM1, CFP, CFB, TNFAIP3, TRAF3, PRAM1
response to inor- ganic substance	2.35	4.23	9	60	COL1A1, CYP1B1, KDM6B, GPX3, HP, MAP3K5, TN- FAIP3, UCP2, CD36
cytokine produc- tion	2.34	11.93	25	177	CD24, LILRB2, CEBPB, HPSE, CYP1B1, SULF1, IL17RA, HILPDA, IL6ST, IRF1, LTB, NFKB1, NFKB2, NFKBIA, SERPINE1, PIK3CD, PIK3CG, PRKCD, PTGS2, CCL2, C3, TRAF3, C3AR1, TRIM25, IL18R1
response to ethanol	2.33	4.74	10	65	TNC, ICAM1, ITPR2, S100A8, S100A9, CCL2, SOD2, STAT3, VCAM1, CD14
multi-multicellular organism process	2.32	10.58	22	145	ADM, CD55, FBLN1, MAFF, B4GALT1, IL1B, IL1RN, JUNB, LIF, MMP9, PAPPA, SER- PINE2, PRLR, PTGS2, CCL2, SPP1, STC1, TGFBR2, TIMP1, UCP2, VDR, VMP1

	0.20	10 59		147	CD94 ADAMO IDAD1 FIT1
of MARK espende	2.32	10.58		147	CD24, $ADAMO$ , $LPARI$ , $FLII$ , FDD1 $ICFDD2$ II 1D II 1DN
of MALK cascade					IDAK1 LIE MAD2K5 MVD99
					OSM DIV2CC DDOV2
					$C_{100,10}$ CIC1 CVC TIDC1
					S100A12, SICI, SIK, IIDSI,
1 • 1141	0.90	F 05	11	70	WN15A, CACR4, CD30
embryonic skeletal	2.32	5.25	11	72	COLIAI, COLIIAI, RDHIO,
system develop-					SULFI, GASI, CHSTII,
ment					PDGFRA, KIAA1217,
	2.22	0.00	20	100	TGFBR2, WNT5A, RUNX2
aging	2.32	9.63	20	132	CDKNIA, CISC, COL3AI,
					ADM, VASH1, ICAM1, IL6,
					MME, NCF2, SERPINEI,
					PRKCD, RETN, CCL2, SOD2,
					TGFBR2, TIMP1, TNFRSF1B,
				1.0.0	UCP2, VCAM1, CD86
negative regulation	2.30	9.70	20	133	TRIB1, CDKN1A, IRAK3,
of transferase activ-					CD300A, PYCARD, IL1B,
ity					IL6, LYN, ERRFI1, PRKCD,
					DNAJC3, PSMB9, PTPN6,
					PTPRC, SORL1, SOCS1, IRS2,
					SOCS3, GMFG, MVP
placenta develop-	2.29	6.27	13	86	CEBPB, ADM, HIF1A, ITGB8,
ment					JUNB, LIF, NFE2, PTGS2,
					SPP1, STC1, VCAM1, VDR,
					SOCS3
response to ionizing	2.29	4.82	10	66	CDKN1A, CYBA, SPIDR,
radiation					ICAM1, IFI16, MYC, CCL2,
					NABP1, SOD2, VCAM1
odontogenesis	2.29	4.82	10	66	FST, COL1A1, ADM, CSF3R,
					GAS1, TNC, TNFRSF11B,
					PDGFRA, FAM20C, RUNX2
cellular response to	2.28	8.76	18	120	CDKN1A, HBEGF, SULF1,
fibroblast growth					CXCL8, ITPR2, PDGFRA,
factor stimulus					PIK3CD, PRKCD, FAM20C,
					CCL2, CCL5, SHC1, THBS1,
					WNT5A, RUNX2, IRS2, CD86,
					CD44
cartilage develop-	2.28	7.30	15	100	CHI3L1, COL1A1, COL11A1,
ment					COMP, SULF1, CHRDL2,
					HIF1A, ITGB8, CHST11,
					STC1, TGFBR2, THBS1,
					WNT5A, RUNX2, CD44
response to hexose	2.27	5.84	12	80	CYBA, GLUL, HIF1A,
					ICAM1, PIM3, NCF2, PTGS2,
					TGFBR2, THBS1, UCP2,
					VCAM1, IRS2
regulation of cell-	2.26	6.35	13	87	OLFM4, COL1A1, EGFL6,
substrate adhesion					MFI2, SERPINE1, PLAU,
					PREX1, RAC2, BCL6, SPP1,
					THBS1, VEGFA, CD36
L			1		

					18-
regulation of	2.26	6.35	13	87	IKZF1, CCR1, HCLS1, HIF1A,
myeloid cell differ-					LIF, LIF, LYN, MYC, NFK- BIA DE4 DTDN2 SDI1 TV
entiation					BORP 1111112, 5111, 11-
positive regulation	2.26	6.35	13	87	ADAM8. LILRB2. IKZF1.
of leukocyte differ-					CCR1, HCLS1, IL4R, IL6, LIF,
entiation					PF4, SASH3, SYK, TGFBR2,
					CD86
regulation of actin	2.25	4.89	10	67	ARPC1B, CORO1A, CSF3, PY-
filament polymer-					CARD, HCK, HCLS1, ICAM1,
ization	0.05	20.07	40	970	TRICD, PREXI, CAPG
of cell proliferation	2.20	20.07	40	219	CVP1B1 DPT AIF1 FAP
or cen promeration					VASH1. SULF1. GAS1.
					B4GALT1, CXCL1, IGFBP3,
					IL1A, IL1B, IL6, CXCL8, IRF1,
					LIF, MYC, OSM, SERPINE2,
					PLA2G2A, PTGS2, PTPN2,
					RARRES1, BCL6, ROBO1,
					SOD2, STAT3, TGFBR2,
					THBS1, TLR2, VDR, WNT5A,
					RASSF5, SKAP2, CD37,
Fe opsilon recontor	2.25	7 37	15	101	ADAMISI, PIGES
signaling pathway	2.20	1.51	15	101	ITPR2 LCP2 LVN NFKB1
signaming pathway					NFKBIA. PDGFRA. PIK3CD.
					SHC1, SYK, LAT2, IRS2, CD86
positive regulation	2.24	5.91	12	81	CTSC, CTSH, PYCARD, JAK3,
of apoptotic signal-					MCL1, OSM, G0S2, PRKCD,
ing pathway					S100A8, S100A9, BID, THBS1
response to reactive	2.23	6.42	13	88	PPIF, COL1A1, CYP1B1,
oxygen species					KDM6B, GPX3, HP, IL6,
					MAP3K5, BNIP3, SOD2,
norativo regulation	0.02	6 49	19	00	INFAIP3, UCP2, CD30
of secretion	2.23	0.42	10	00	ULIB ILLIN IL6 LIF PIM3
of secretion					OSM SBGN PTGEB4 CCB2
					UCP2
response to drug	2.22	16.12	32	221	CDKN1A, PLIN2, CYBA,
					CYBB, ABCA1, ACSL1,
					RNF149, ICAM1, IL1B, IL1RN,
					IL6, ITGA2, JUNB, LOX,
					LYN, MGST1, MT2A, MYC,
					NCF2, NNMT, TNFRSF11B,
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					$\begin{array}{cccc} 51022A3, & 50D2, & 51A13, \\ TGFBR9 & THRS1 & TIR9 \end{array}$
					CD86. CD69
					0200, 0200

	0.00	15 61	91	014	CDUNIA COLLAI ADM
response to extra-	2.22	10.01	91	214	CDKNIA, COLIAI, ADM,
cellular stimulus					CYBA, CYBB, ABCAI,
					ACSL1, GLUL, TNC, ICAM1,
					IFI16, IL6, ITGA2, LYN,
					TNFRSF11B PTGS2 CCL2
					NOD2 SLC22A2 SOD2 SPD1
					NOD2, SLC22A3, SOD2, SI I I,
					STCI, TGFBR2, UCP2, UPP1,
					VCAM1, VDR, TRIM25,
					CPEB4, VAMP8, KYNU
positive regulation	2.22	13.06	26	179	ADAM8, CSF1R, FCER1G,
of secretion					FCN1, FGR, CLEC5A, PANX1,
					CLECAE CLUL PVCARD
					$\begin{array}{c} \textbf{U} = $
					HIFIA, ILIA, ILIB, IL4R, IL0,
					RETN, PTGER4, RAB27A,
					NOD2, SYK, TLR2, WNT5A,
					IRS2, IL1RL1, CD14, TNFSF15
carbohydrate	2.20	6.49	13	89	ENO1. GK. HIF1A. HK2. HK3.
catabolic process	0	0.10	10	00	PEKEB3 PEKEBA PCD
catabolic process					DCV1 DDIT4 CTAT2 IED2
					PGKI, DDI14, SIAI3, IER3,
					MGAM
protein targeting to	2.20	8.03	16	110	CDKN1A, CSF3, HCLS1, IL1B,
nucleus					IL6, JAK3, NFKBIA, NFK-
					BIE, PTGS2, BCL3, BCL6,
					SLC11A1 STAT3 TLB2
					$\begin{array}{c} \text{Sherman}, \text{Sherman},$
· 1 ·	0.00	0.09	1.0	110	$\frac{1110001}{00000000000000000000000000000$
single-organism nu-	2.20	8.03	10	110	CDKNIA, CSF3, HCLS1, ILIB,
clear import					IL6, JAK3, NFKBIA, NFK-
					BIE, PTGS2, BCL3, BCL6,
					SLC11A1, STAT3, TLR2,
					IL18R1, CD36
positive regulation	2.20	21.01	41	288	CD24. ADAM8. CDKN1A.
of kinase activity					CHI3L1 CD300A MAP3K8
of killase activity					CSE1D I DAP1 ACSI 1 FCP
					ELEI EDDI ODEMI HID
					FLII, FPRI, GREMI, ILIB,
					ILIRN, CXCL8, IRAK1, LTF,
					LYN, MAP3K5, PDGFRA,
					PIK3CG, DNAJC3, PRLR, PT-
					PRC. PROK2. S100A12. CCL2.
					CCL5 NOD2 SHC1 SLC11A1
					CVL TCEDD2 TUDC1
					SIK, IGFDR2, IIIDSI,
					C5ARI, VEGFA, WNT5A,
					CXCR4, TNFRSF10B, TN-
					FSF15
cellular response to	2.19	5.00	10	69	PPIF, KDM6B, GPX3, HP, IL6,
oxidative stress					MGST1 SLC11A2 BNIP3 TN-
					FAIP3 CD36
rogulation of nor	0.17	0 61	17	110	ADAMS OFDDD OCES
regulation of neu-	2.17	8.01	17	118	ADAMO, UEBPB, USF3,
ron death					NR3CI, HIFIA, IL6, MCLI,
					MAP3K5, NCF2, DDIT4,
					CCL2, CCL5, SOD2, SORL1,
					C5AR1, CPEB4, NRP1
L					

T-  -  -	10	<b>.</b>	<b>f</b>		
Table	12 -	continueu	ITOIL	previous	page

Table 13 – continued from previous page								
activation of pro- tein kinase activity	2.17	5.54	11	77	CHI3L1, CD300A, MAP3K8, GREM1, PRLR, CCL5, SLC11A1, TGFBR2, VEGFA, TNFRSF10B, TNFSF15			
response to glucose	2.17	5.54	11	76	CYBA, GLUL, HIF1A, ICAM1, PIM3, NCF2, TGFBR2, THBS1, UCP2, VCAM1, IRS2			
negative regulation of neuron death	2.17	5.54	11	76	ADAM8, CEBPB, CSF3, HIF1A, IL6, CCL2, SOD2, SORL1, C5AR1, CPEB4, NRP1			
single-organism carbohydrate catabolic process	2.17	6.06	12	83	ENO1, GK, HIF1A, HK2, HK3, PFKFB3, PFKFB4, PGD, PGK1, DDIT4, STAT3, IER3			
B cell activation	2.16	5.58	11	78	IKZF1, JAK3, PIK3CD, PRKCD, PTPN2, PTPN6, BCL3, VCAM1, LAT2, SKAP2, CD86			
negative regulation of endopeptidase activity	2.13	9.27	18	127	SERPINA3, CSTA, SER- PINB1, IFI16, IL6, SERPINE1, SERPINB2, SERPINA1, SER- PINE2, RPS6KA1, SORL1, THBS1, TIMP1, TIMP3, C3, VEGFA, TFPI2, CD44			
ossification	2.12	6.17	12	86	COL1A1, SBNO2, CLEC5A, CHRDL2, TNC, IGFBP3, JUNB, MMP9, ASGR2, PTGS2, SPP1, STC1			
negative regulation of transport	2.12	14.08	27	193	PPIF, LILRB2, CD300A, LRRC32, TNFRSF21, ICAM1, IL1B, IL1RN, IL6, LGALS3, LIF, PIM3, MMP9, NFKB1, NFKBIA, NFKBIE, OSM, SER- PINE2, PID1, SRGN, PTGER4, PTGS2, THBS1, CCR2, UCP2, IRS2, CD36			
response to corti- costeroid	2.11	6.20	12	85	CDKN1A, COL1A1, ADM, NR3C1, IL1RN, IL6, JUNB, PAPPA, PLAT, PTGS2, CCL2, STC1			
regulation of cal- cium ion transport	2.09	6.79	13	93	LILRB2, CCR1, MCHR1, ICAM1, LGALS3, LYN, ARRB2, PTGS2, PTPN6, CCL2, CCL4, CCL5, STC1			
negative regulation of response to ex- ternal stimulus	2.08	6.28	12	87	TRIB1, METRNL, LTF, NFKB1, SERPINE1, PRKCD, PTGER4, NOD2, SPP1, TN- FAIP3, TNFRSF1B, IER3			

		_		
Table 13 –	continued	from	previous	page

positive regulation of apoptotic process	2.07	13.83	26	191	FGD4, ADM, CYP1B1, LPAR1, ALDH1A3, PHLDA1, B4GALT1, NR3C1, PY- CARD, IGFBP3, IL6, ARRB2, MAP3K5, MMP9, MNDA, NCF2, ARHGEF3, PTGS2, NLRC4, BCL6, BID, BNIP3, TGM2, THBS1, VDR, FGD3
endocytosis	2.06	19.40	36	272	CORO1A, CD300A, MARCH3, ADM, ABCA1, PPAPDC1A, AIF1, FCGR2A, FCN1, FGR, STAB1, SH3KBP1, HCK, CXCL8, CXCR2, ITPR2, LGALS3, LYN, ASGR2, MYO10, BIN2, PIK3CG, PRKCD, APOBR, CDC42SE1, CLEC7A, SORL1, SYK, TFRC, TGFBR2, TGM2, THBS1, LOXL3, VAMP8, PSTPIP1, CD163
positive regulation of cytokine produc- tion	2.05	7.95	15	113	ADAM8, CSF1R, IL17RA, PANX1, HILPDA, BIRC3, IFI16, IL4R, IRF1, NFKB1, NFKB2, NFKBIA, SERPINE1, THBS1, IL1RL1
response to nitro- gen compound	2.05	12.31	23	173	CDKN1A, IRAK3, ADM, CD55, PANX1, IL1RN, IL6, IRAK1, ITGA2, JUNB, MGST1, MMP19, MYD88, NFKBIA, NNMT, PLAT, RETN, CCL2, SELL, TIMP1, C5AR1, VCAM1, KYNU
regulation of prote- olysis	2.04	19.56	36	270	TRIB1, CTSC, SERPINA3, CSTA, CTSH, SERPINB1, F3, FBLN1, PYCARD, BIRC3, IFI16, IL6, MAP3K5, MYC, SLC11A2, SERPINE1, SER- PINB2, SERPINA1, SER- PINE2, PLAT, PLAUR, NLRC4, ROBO1, RPS6KA1, S100A8, S100A9, BID, SORL1, THBS1, C3, TRAF3, VEGFA, TFPI2, TNFRSF10B, CD44, TNFSF15
developmental growth involved in morphogenesis	2.03	6.42	12	88	SEMA4D, COMP, RDH10, TNC, ROBO1, SPP1, STC1, THBS1, VEGFA, WNT5A, NRP2, NRP1
antigen processing and presentation	2.02	8.62	16	119	CTSH, CTSS, CYBA, CYBB, FCER1G, FCGR1B, ICAM1, NCF2, NCF4, PSMB9, RAB27A, RELB, TAP1, TAPBP, CD1D, CD36

<b>T</b> 1 1	10			c		
lable	13	_	continued	trom	previous	page
						1 0

cellular response to growth factor stim- ulus	1.99	17.65	32	246	LRG1, FGD4, COL1A1, COL3A1, FBN1, FLT1, FMOD, GAS1, HAS2, HIF1A, IL1B, IRAK1, JUNB, ARRB2, MT1G, MYC, MYD88, NFKB1, NFK- BIA, CHST11, SERPINE1, ARHGEF3, DDIT4, RPS6KA1, STAT3, TGFBR2, TNFRSF1B, VCAM1, VEGFA, NRP2, NRP1, FGD3
response to acid chemical	1.99	9.84	18	136	CEBPB, COL1A1, COL3A1, COL5A2, CTSH, CYBA, ABCA1, ICAM1, IL6, ITGA2, LYN, PDGFRA, CCL2, SOD2, WNT5A, CPEB4, SOCS1, PTGES
response to organic cyclic compound	1.98	10.44	19	147	IRAK3, PLIN2, CYBA, CYP1B1, ABCA1, ACSL1, SPIDR, ICAM1, ITGA2, LYN, NFKB1, NFKBIA, TAF9B, CCL5, NOD2, VCAM1, KYNU, CD36, PTGES
protein import	1.96	8.83	16	121	CDKN1A, CSF3, HCLS1, IL1B, IL6, JAK3, NFKBIA, NFK- BIE, PTGS2, BCL3, BCL6, SLC11A1, STAT3, TLR2, IL18R1, CD36
protein autophos- phorylation	1.94	8.90	16	122	CAMKK2, IRAK3, CSF1R, FGR, FLT1, GREM1, HCK, IRAK1, LYN, PIM3, PDGFRA, ERRF11, STK10, SYK, VEGFA, MVP
regulation of kinase activity	1.94	8.36	15	119	TRIB1, CAMKK2, IRAK3, PY- CARD, IL6, ERRFI1, PRKCD, SLAMF8, PTPN6, SORL1, SOCS1, IRS2, SOCS3, GMFG, MVP
generation of pre- cursor metabolites and energy	1.93	12.40	22	170	PPIF, ENO1, MCHR1, HIF1A, HK2, HK3, IL6ST, ITPR2, MYC, PFKFB3, PFKFB4, PGK1, DDIT4, PID1, SOD2, STAT3, UCP2, UGP2, IRS2, IER3, GFPT2, SCO2
lung development	1.89	7.95	14	109	PDPN, CHI3L1, CTSH, RDH10, HSD11B1, TNC, LIF, LOX, PDGFRA, ERRFI1, TGFBR2, VEGFA, WNT5A, ADAMTS2
stem cell develop- ment	1.89	9.12	16	125	COL1A1, RDH10, GREM1, HAS2, HIF1A, FAM101B, LIF, PLA2G2A, PTPRC, S100A4, SPI1, STAT3, WNT5A, LOXL3, NRP2, NRP1

Table 13 - continued from previous page

Table 13 – continued from previous page									
receptor-mediated endocytosis	1.87	9.78	17	134	ADM, STAB1, GREM1, CXCL8, CXCR2, ARRB2, ASGR2, SERPINE1, APOBR, SELE, SORL1, TFRC, TGFBR2, VEGFA, LOXL3, CD163, CD36				
regulation of cellu- lar component size	1.84	9.92	17	136	ARPC1B, SEMA4D, CORO1A, CSF3, PYCARD, HCK, HCLS1, ICAM1, PLEK, PRKCD, PREX1, SPP1, VEGFA, WNT5A, CAPG, SH3BGRL3, NRP1				
divalent metal ion transport	1.83	14.74	25	202	LILRB2, CORO1A, CCR1, SLC39A14, PANX1, GJA4, MCHR1, ERO1L, ICAM1, ITPR2, LGALS3, LYN, ARRB2, SLC11A2, CCDC109B, PTGS2, PTPN6, PTPRC, CCL2, CCL4, CCL5, CCL8, SLC11A1, STC1, VDR				
exocytosis	1.82	9.41	16	131	CD300A, CCR1, FGR, B4GALT1, HCK, MYO1F, PIK3CD, PIK3CG, RAB27A, CCL5, CCL8, STXBP2, TN- FAIP2, CCR2, LAT2, PRAM1				
response to oxida- tive stress	1.82	12.40	21	170	PPIF, COL1A1, CYP1B1, RCAN1, KDM6B, GPX3, HIF1A, HP, IL6, MCL1, MAP3K5, MGST1, NFKB1, SLC11A2, PRKCD, PTGS2, BNIP3, SOD2, TNFAIP3, UCP2, CD36				
regulation of pro- tein kinase activity	1.82	20.88	35	292	CD24, ADAM8, CAMKK2, CHI3L1, MAP3K8, CSF1R, LPAR1, ACSL1, FGR, FLT1, FPR1, GREM1, IL1RN, CXCL8, IRAK1, LTF, MAP3K5, PIK3CG, PRLR, PROK2, S100A12, CCL2, CCL5, NOD2, SHC1, SLC11A1, SYK, TGFBR2, THBS1, C5AR1, VEGFA, WNT5A, CXCR4, TNFRSF10B, TN- FSF15				
reproductive sys- tem development	1.81	17.29	29	237	FST, CEBPB, ADM, RDH10, SULF1, GJB2, HIF1A, TNC, ICAM1, ITGB8, JUNB, LIF, ARRB2, MGST1, MMP19, NFE2, PDGFRA, SERPINE2, RETN, PTGS2, SPP1, STC1, VCAM1, VDR, VEGFA, WNT5A, SOCS3, ADAMTS1, CD44				

Table 13 -	<ul> <li>continued</li> </ul>	from	previous	page	
	Tuble	10 continue	cu nom p	cvious	Puec
--------------------------------------------------------------------------------------	-------	-------------	----------	--------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
negative regulation of hydrolase activ- ity	1.81	14.30	24	196	PPIF, SEMA4D, SERPINA3, CSTA, SERPINB1, IFI16, IL6, ARRB2, SERPINE1, SERPINB2, ANGPTL4, SER- PINA1, SERPINE2, PTX3, RPS6KA1, SORL1, THBS1, TIMP1, TIMP3, C3, VEGFA, TFPI2, SPOCD1, CD44
regulation of DNA metabolic process	1.81	9.48	16	130	CDKNIA, PPP4R2, SPIDR, GREM1, IL6, CXCL8, ARRB2, MYC, NPAS2, PDGFRA, PID1, BCL6, SHC1, SPI1, TNFSF13, IER3
positive regulation of cell differentia- tion	1.81	16.74	28	235	CD24, SEMA4D, OLFM4, COL1A1, ADM, GREM1, METRNL, HIF1A, IGFBP3, JUNB, LYN, SERPINE2, ADAMTS9, PTGS2, PREX1, ROBO1, RPS6KA1, C10orf54, TCF4, TLR2, VDR, VEGFA, CXCR4, ZC3H12A, MEDAG, NRP1, SOCS3, BOC
cellular response to nitrogen compound	1.80	20.43	34	280	TCIRG1, CEBPB, COL1A1, COL3A1, COL5A2, CYBA, EGR2, SPIDR, ICAM1, IL1B, AQP9, ITPR2, JAK3, LYN, MAP3K5, NFKB1, PDGFRA, PID1, PRKCD, PRLR, PTGS2, PTPN2, PTPN6, PTPRE, NOD2, SHC1, STAT3, STC1, TLR2, UCP2, CPEB4, SOCS1, IRS2, SOCS3
transmembrane receptor protein serine/threonine kinase signaling pathway	1.80	11.31	19	155	FST, LRG1, COL3A1, FBN1, SULF1, FMOD, GREM1, IRAK1, JUNB, ARRB2, MYC, CHST11, SERPINE1, CCL2, C10orf54, TGFBR2, THBS1, WNT5A, RUNX2
tube morphogenesis	1.80	13.13	22	180	PDPN, CTHRC1, ADM, CSF1R, CTSH, RDH10, FLT1, B4GALT1, NR3C1, HIF1A, TNC, MYC, ROBO1, SPI1, TGFBR2, TGM2, VDR, VEGFA, WNT5A, CXCR4, NRP1, CD44

Table 13 -	- continued	from	previous	page
TUDIC 10	continucu		previous	puge

Table 13 – continued from previous page							
symbiosis, encom- passing mutualism through parasitism	1.78	21.33	35	299	DOCK2, FBLN1, FCGR2B, CLEC5A, ANPEP, PILRA, HCK, ICAM1, IFI16, IL6ST, CXCL8, ISG20, ITGA2, LYN, MAP3K5, MYD88, NFKBIA, PDGFRA, PLSCR1, TREM1, PSMB9, CCL2, CCL4, CCL5, BNIP3, STAT3, SYK, TFRC, CCR2, VCAM1, CFLAR, ATG16L2, CD1D, CD86, CD36		
interspecies interac- tion between organ- isms	1.76	21.33	20	299	DOCK2, FBLNI, FCGR2B, CLEC5A, ANPEP, PILRA, HCK, ICAM1, IFI16, IL6ST, CXCL8, ISG20, ITGA2, LYN, MAP3K5, MYD88, NFKBIA, PDGFRA, PLSCR1, TREM1, PSMB9, CCL2, CCL4, CCL5, BNIP3, STAT3, SYK, TFRC, CCR2, VCAM1, CFLAR, ATG16L2, CD1D, CD86, CD36		
response to steroid hormone	1.77	15.76	26	216	CD24, CDKN1A, COL1A1, ADM, RCAN1, NR3C1, IL1RN, IL4R, IL6, JUNB, LOX, NCF2, TNFRSF11B, PAPPA, PLAT, PTGS2, CCL2, BID, SPP1, STAT3, STC1, TGFBR2, THBS1, TLR2, VDR, TRIM25		
regulation of cel- lular response to stress	1.76	15.90	26	218	PPP4R2, VASH1, SPIDR, PYCARD, HIF1A, HP, IL1B, IL1RN, LYN, MCL1, MAP3K5, MYC, MYD88, NPAS2, TAF9B, PRKCD, BDKRB2, NOD2, SOD2, SPP1, SYK, VEGFA, WNT5A, IER3, CD36, CD44		
response to peptide hormone	1.75	16.56	27	227	TCIRG1, COL1A1, ADM, CD55, EGR2, IL1B, IL6, JAK3, JUNB, LYN, NFKB1, PLAT, PID1, PRKCD, PRLR, RETN, PTPN2, PTPN6, PTPRE, SHC1, STAT3, TIMP1, TLR2, UCP2, SOCS1, IRS2, SOCS3		
stem cell differenti- ation	1.75	11.60	19	159	COL1A1, RDH10, GREM1, HAS2, HIF1A, FAM101B, LIF, PDGFRA, PLA2G2A, PTPRC, S100A4, C10orf54, SPI1, STAT3, WNT5A, LOXL3, RUNX2, NRP2, NRP1		
lipid localization	1.73	12.99	21	178	PLIN2, ABCA1, ACSL1, HILPDA, IL1B, IL6, NFKB1, NFKBIA, PRKCD, APOBR, RETN, PTPN2, BDKRB2, SORL1, SYK, THBS1, C3, ZC3H12A, DGAT2, IRS2, CD36		

T I I 10		c		
Table 13 –	continued	trom	previous	page

epithelial tube mor- phogenesis	1.71	12.48	20	171	CTHRC1, ADM, CSF1R, CTSH, RDH10, FLT1, B4GALT1, NR3C1, HIF1A, TNC, MYC, ROBO1, SPI1, TGFBR2, VDR, VEGFA, WNT5A, CXCR4, NRP1, CD44
actin cytoskeleton organization	1.70	20.87	33	286	ARPC1B, CORO1A, FGD4, CSF1R, CSF3, DOCK2, DPYSL3, AIF1, ARHGAP26, PYCARD, CXCL1, HCK, HCLS1, ICAM1, FAM101B, RHOG, LCP1, ARHGDIB, MYO1F, NEDD9, PDGFRA, PLEK, PRKCD, PTGER4, PREX1, RAC2, BCL6, PARVG, SHC1, CAPG, SH3BGRL3, CFLAR, FGD3
negative regulation of cellular compo- nent organization	1.67	16.63	26	228	PPIF, CORO1A, IRAK3, CD300A, DPYSL3, LPAR1, FAP, LGALS3, LIF, MBP, MFI2, NFE2, OSM, PID1, PRKCD, PTGER4, BNIP3, SORL1, SPI1, SPP1, THBS1, WNT5A, CAPG, NRP1, CFLAR, IER3
calcium ion trans- port	1.65	14.15	22	194	LILRB2, CORO1A, CCR1, PANX1, GJA4, MCHR1, ERO1L, ICAM1, ITPR2, LGALS3, LYN, ARRB2, CCDC109B, PTGS2, PTPN6, PTPRC, CCL2, CCL4, CCL5, CCL8, STC1, VDR
tissue morphogene- sis	1.62	21.01	32	288	FST, CTHRC1, COL11A1, ADM, CSF1R, CTSH, RDH10, HBEGF, ALDH1A3, KDM6B, FLT1, SULF1, B4GALT1, NR3C1, HIF1A, TNC, IL6, ITGA2, LIF, MYC, ROBO1, SPI1, STC1, TGFBR2, TGM2, VDR, VEGFA, WNT5A, CXCR4, NRP1, SOCS3, CD44
positive regulation of protein phospho- rylation	1.62	21.03	32	295	ADAM8, CDKN1A, CHI3L1, CD300A, MAP3K8, LPAR1, ACSL1, FLT1, FPR1, IL1B, IL1RN, CXCL8, IRAK1, LTF, MAP3K5, PIK3CG, DNAJC3, PRLR, PTPRC, PROK2, S100A12, CCL2, SHC1, SLC11A1, TGFBR2, THBS1, C3, C5AR1, WNT5A, CXCR4, TNFRSF10B, TN- FSF15

Table	13 –	continue	d from	previous	page
					r

	Table	13 – continue	ed from p	revious	page
viral process	1.61	18.46	28	256	DOCK2, FBLN1, FCGR2B,
					CLEC5A, ANPEP, PILRA,
					HCK, ICAM1, IL6ST, ITGA2,
					LYN, MAP3K5, NFKBIA,
					PDGFRA, PSMB9, CCL2,
					BNIP3, STAT3, SYK, TFRC,
					CCR2, VCAM1, CXCR4,
					VAMP8, CFLAR, ATG16L2,
					CD1D, CD86
chemotaxis	1.60	16.49	25	247	CD24, PLXNC1, SEMA4D,
					COL3A1, COL5A2, DOCK2,
					DPYSL3, TYMP, EGR2, FPR1,
					GAS1, LAMA2, LSP1, MYO10,
					PLAU, PLAUR, PLD1, PTPRC,
					RAC2, PROK2, RPS6KA1, TY-
					ROBP, CNTNAP1, NRP2,
					BOC

Next, we carry out the GO enrichment analysis for the significantly down-regulated genes. Results can be found in Table 14.

```
> maskDown <- ttAll$logFC < 0</pre>
> DEgenesDown <- intersect(ttAll[maskDown, "ID"], DEgenes)</pre>
> length(DEgenesDown)
[1] 505
> gUniverse <- ttAll[maskDown, "ID"]</pre>
> length(gUniverse)
[1] 9287
> GOparams <- new("GOHyperGParams", geneIds=DEgenesDown, universeGeneIds=gUniverse,
                  annotation="org.Hs.eg.db", ontology="BP",
                  pvalueCutoff=goAnalysisCondPvalueCutoff, conditional=TRUE,
                  testDirection="over")
> cache(hgOverGOBPdeGenesDown <- hyperGTest2(GOparams, minSizeCutoff=5, maxSizeCutoff=300, orCuto
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> hgOverGOBPdeGenesDown
Gene to GO BP Conditional test for over-representation
4046 GO BP ids tested (176 have p < 0.01)
Selected gene set size: 425
    Gene universe size: 6983
    Annotation package: org.Hs.eg
> IQRs <- apply(cleanExps[gUniverse, ], 1, IQR)</pre>
> cache(reportOverGOBPdeGenesDown <- GOreport(hgOverGOBPdeGenesDown, minSize=5, maxSize=300,</p>
                                                minCount=5, minOddsRatio=1.5, featureFilterValues=
                                                ff.R=1000, ff.prob=0.90, maxReported=Inf,
                                                p.value=0.1, p.adjust.method="fdr"),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> dim(reportOverGOBPdeGenesDown)
[1] 35 10
```

**Table 14.** Gene Ontology (GO) enrichment (biological process) of downregulated genes called differentially expressed between FIR and nonFIR affected infants at FDR < 1% and with a minimum 1.5-fold change. Column "GeneSyms" contains the genes enriching the corresponding GO term.

Term	OddsRatio	ExpCount	Count	Size	GeneSyms
positive regulation	11.72	0.85	6	14	GADD45G, DUSP19, ANKRD6,
of JNK cascade					PLCB1, FZD7, DIXDC1
positive regulation	6.69	1.22	6	20	GADD45G, DUSP19, ANKRD6,
of stress-activated					PLCB1, FZD7, DIXDC1
protein kinase sig-					
naling cascade	0.05	1.00		21	
regulation of	6.25	1.28	6	21	GUCYIA3, ATPIA2, P2RXI,
smooth muscle					PLCEI, PRKGI, CAVI
contraction	6.95	1 90	G		CITED2 EDN2 EOVC1 ICI 1
relearnert	0.25	1.28	0	21	CI1ED2, $EDN3$ , $FOACI$ , $ISLI$ , DITY2 BMDB1A
astrocyte differenti-	5 51	1.40	6	23	CDK6 FGFR3 BIN1 NTRK3
ation	0.01	1.40	0	20	PLP1. SOX6
cell fate specifica-	4.56	1.89	7	31	HOXA13. HOXC10. ISL1.
tion	1.00	1.00		01	NTRK3. SOX6. BMPR1A.
					FZD7
response to alkaloid	4.56	1.89	7	31	GSTM2, HNMT, ATP1A2,
-					BCHE, RYR2, RYR3, CASQ2
calcium-mediated	4.28	2.56	9	42	DMD, DMPK, LPHN1, GSTM2,
signaling					PLCE1, PPP1R9A, RYR2,
					CASQ2, RGN
negative regulation	4.17	2.31	8	38	FGF13, FGFR3, SPG20,
of neurogenesis					NTRK3, PCM1, PTK2,
1	1.0.1	0.05			BMPR1A, ULK2
negative regulation	4.04	2.37	8	39	KANKI, ANGPTI, ARHGAP6,
of cell adhesion					PIK3RI, PRKGI, PTK2, JAM2,
norotivo regulation	4.02	2.08	10	40	FZD7 DDICKIE1 AMED9
of canonical Wrt	4.05	2.90	10	49	ANKRD6 FRZB DKK3
signaling pathway					APC ISL1 WNT4 TCF7L2
bightaining patitivay					CAV1
embryonic limb	4.03	3.59	12	59	FGF9. HOXA10. HOXA13.
morphogenesis					HOXC10, AFF3, LRP5,
1 0					MYH3, PBX1, PITX2, PTCH1,
					BMPR1A, FRAS1
regulation of blood	3.57	3.29	10	54	EDN3, FOXC1, GUCY1A3,
vessel size					KCNA5, KCNJ8, ATP1A2,
					P2RX1, PRKG1, CAV1, ATG5
appendage morpho-	3.57	3.96	12	65	FGF9, HOXA10, HOXA13,
genesis					HOXC10, AFF3, LRP5,
					MYH3, PBX1, PITX2, PTCH1,
1:1	9.40	4.90	10	70	BMPRIA, FRASI
limb development	3.48	4.38	13	72	FGF9, HOXAI0, HOXAI3,
					$\begin{array}{cccc} \Pi \cup \Lambda \cup \Pi \cup \Pi \\ \Pi \cup \Lambda \cup \Pi \cup \Pi \\ \Pi \cup \Pi \cup \Pi \\ \Pi \cup \Pi \cup \Pi \\ \Pi \\$
					$\begin{array}{c} \text{MPR1A} & \text{NR2F2} & \text{FRAS1} \\ \text{BMPR1A} & \text{NR2F2} & \text{FRAS1} \end{array}$
					$\frac{1}{10000000000000000000000000000000000$

					1-0-
heart contraction	3.25	4.99	14	82	DMD, DMPK, EDN3, GPD1L,
					HEY2, GSTM2, KCNA5,
					ATPIA2, FXYDI, PRKCA,
					RYR2, CASQ2, CAV1, ATG5
cell-matrix adhe-	3.20	3.96	11	65	CDK6, DLC1, COL13A1,
sion					ECM2, ARHGAP6, PIK3R1,
					WNT4, EPDR1, PTK2,
					AJUBA, ITGA10
regulation of Wnt	2.98	6.15	16	101	PRICKLE1, AMER2, FGF9,
signaling pathway					FGFR3, ANKRD6, KANK1,
					FRZB, DKK3, APC, ISL1,
					LRP5, WNT4, TCF7L2, TLE1,
					DIXDC1, CAV1
regulation of metal	2.63	6.39	15	105	CNTN1. CNKSR3. DMD.
ion transport			_		DMPK. GPD1L. GSTM2.
ion transport					KCNA5 P2BX1 FXYD1
					RVR2 CACNA2D1 KCNAB1
					CAMK2C $CASO2$ $CAV1$
of	2.60	<u> </u>	10	125	DETN DI FULLO INV
regulation of	2.00	0.22	19	155	DSIN, FLEXIII2, JW1, EDN2 ECE12 EOVC1 SDC20
anatomicai struc-					EDN3, FGF13, FOACI, SPG20,
ture size					KANKI, GUUYIA3, KUNA5,
					KCNJ8, ATPIA2, NTRK3,
					P2RX1, PFN2, PRKG1, CAV1,
					ATG5, ULK2
regulation of lipid	2.59	6.03	14	99	FABP3, FGFR3, DKK3,
metabolic process					DNAJC15, PRKAG2, PDK2,
					PDK4, PIK3R1, WNT4, PTK2,
					TCF7L2, CAV1, PDE8B,
					NR1D2
circulatory system	2.54	9.74	22	160	DMD, DMPK, EDN3, FOXC1,
process					GPD1L, HEY2, ANGPT1,
					GSTM2, GUCY1A3, KCNA5,
					KCNJ8, LRP5, ATP1A2,
					P2RX1, FXYD1, PRKCA,
					PRKG1, RYR2, OR51E2,
					CASQ2, CAV1, ATG5
stem cell develop-	2.54	7.49	17	123	CITED2, EDN3, FGFR3,
ment					FOXC1. HEY2. APC. ISL1.
					LRP5. PCM1. PITX2. WNT4.
					BMPR1A TCF7L2 LDLBAD4
					TET1 FZD7 LDB2
negative regulation	2.38	12.72	27	209	CDK6. PRICKLE1 FGF13
of cell differentia-	2.00	12.12			FGFR3 SPG20 KANK1
tion					HEV2 FRZB APC ISL1
01011					LRP5 NTRK3 PRX1 PCM1
					$\begin{array}{c} \text{DIG} 0, \text{ Image} 0, \text$
					$\begin{array}{cccc} 1 1 1 1 3 1 1 1 1 1 1 1 1$
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					$\begin{bmatrix} LDLRAD4, & IEII, & FZD7, \\ DIVDC1 & CAV1 & LDD2 & ULV2 \end{bmatrix}$
					DIADUI, UAVI, LDB2, ULK2

# Table 14 - continued from previous page

			P		18-
forebrain develop- ment	2.33	9.98	21	164	CDK6, DLC1, CKB, EMX2, FGF9, FGF13, FGFR3, BTBD3, PLCB1, ISL1, PCM1, PITX2, PLP1, WNT4, PRKG1, SUDS3, BMPR1A, TCF7L2, NR2F2, FAT4, DIXDC1
sulfur compound metabolic process	2.31	9.07	19	149	CSPG5, GPC4, MAMDC2, PHGDH, ANGPT1, GSTM1, GSTM2, ACACB, IDH1, MUT, OGN, PCYOX1, PDK2, PDK4, PRELP, MICAL1, TCF7L2, SUCLG2, DSEL
regulation of cell projection organi- zation	2.28	8.70	18	143	CHN1, CNTN1, DMD, FGF13, SPG20, KANK1, NEGR1, SIPA1L1, APC, NTRK3, PFN2, PTK2, PTPRD, RAP1A, BHLHB9, DIXDC1, ATG5, ULK2
muscle system pro- cess	2.22	10.41	21	171	CRYAB, DMD, DMPK, EDN3, HEY2, GSTM2, GUCY1A3, MYH3, ATP1A2, P2RX1, PLCE1, FXYD1, PRKCA, PRKG1, RYR2, RYR3, SSPN, CAMK2G, CASQ2, CAV1, MYOM1
regulation of cell motility	2.15	11.75	23	193	CDK6, CITED2, DLC1, EDN3, KANK1, PLCB1, GAB1, ANGPT1, SCAI, APC, NTRK3, PFN2, PIK3R1, PITX2, WNT4, PRKCA, PTK2, HACE1, NR2F2, LDLRAD4, MMP28, AJUBA, NEXN
sensory organ de- velopment	2.10	11.99	23	197	CITED2, LRIG3, COL8A2, CRYAB, FGF9, FGFR3, FOXC1, HEY2, TSPAN12, FRZB, HOXA13, APC, LRP5, NTRK3, PITX2, MDM1, TUB, FAT4, DIXDC1, PROM1, KCNQ4, ATG5, CXCL14
regulation of ner- vous system devel- opment	1.98	13.75	25	226	CHN1, CNTN1, DMD, FGF13, FGFR3, LPHN1, SPG20, KANK1, HEY2, NEGR1, SIPA1L1, BIN1, ISL1, NTRK3, PBX1, PCM1, PTK2, PTPRD, RAP1A, BMPR1A, TCF7L2, SYNDIG1, BHLHB9, DIXDC1, ULK2

# Table 14 - continued from previous page

Table 14 – continued from previous page						
embryonic morpho-	1.97	14.36	26	236	CITED2, DLC1, LRIG3,	
genesis					PRICKLE1, FGF9, FOXC1,	
					FRZB, GRSF1, HOXA10,	
					HOXA13, HOXB7, HOXC10,	
					AFF3, LRP5, MYH3, PBX1,	
					PITX2, WNT4, PTCH1, RYR2,	
					BMPR1A, TCF7L2, TXNRD1,	
					FRAS1, FZD7, KCNQ4	
signal transduction	1.95	14.49	26	238	GADD45G, CRYAB, DUSP19,	
by phosphorylation					PPM1L, CNKSR3, EDN3,	
					FGF9, FGF13, FGFR3,	
					ANKRD6, PLCB1, GAB1,	
					ANGPT1, APC, NTRK3,	
					PLCE1, TNFRSF19, PRKCA,	
					RAP1A, RGS4, BMPR1A,	
					STYX, FZD7, AJUBA,	
					DIXDC1, CAV1	
synaptic transmis-	1.90	16.62	29	273	CSPG5, ADCY5, PRIMA1,	
sion					DMPK, EPB41L1, LPHN1,	
					PLCB1, SIPA1L1, GNAI1,	
					APBA1, KCNA5, KCND3,	
					KCNJ8, MAOA, ATP1A2,	
					NFATC4, P2RX1, PFN2,	
					PLCL1, PLP1, PRKCA,	
					PTK2, BCHE, RAP1A, KC-	
					NAB1, SYNDIG1, BHLHB9,	
					CAMK2G, KCNQ4	
regulation of nu-	1.85	18.20	31	299	DLC1, CAP2, CHML,	
cleotide metabolic					CHN1, PLCB1, SIPA1L1,	
process					ARHGEF26, BIN1, DNAJC15,	
					GUCY1A2, GUCY1A3,	
					ARHGAP6, NTRK3, PLCE1,	
					FAM13B, PFN2, WNT4,	
					PRKCA, PRKG1, PTK2,	
					ARHGAP21, RAP1A, RGS4,	
					RYR2, ARHGAP28, GARNL3,	
					AJUBA, RGS9, RGN, RASAL2,	
					RABGAP1L	

Next, we are going to build an integrated display of differential expression, functional enrichment and phenotypic data. For this purpose, we build first incidence matrices of genes by GO terms using the GSEABase package.

> gscUp

```
GeneSetCollection
 names: GD:0072672, GD:0002523, ..., GD:0006935 (542 total)
 unique identifiers: 101, 120425, ..., 10154 (467 total)
 types in collection:
    geneIdType: EntrezIdentifier (1 total)
    collectionType: NullCollection (1 total)
> gscDown <- do.call("GeneSetCollection",</pre>
                     mapply(function(goID, geneIDs)
                             GeneSet(EntrezIdentifier("org.Hs.eg.db"), geneIds=geneIDs,
                                     setName=goID),
                             as.character(reportOverGOBPdeGenesDown$GOBPID),
                             strsplit(gsub(" ", "",
                                           as.character(reportOverGOBPdeGenesDown$Genes)), ","),
                             USE.NAMES=FALSE))
> gscDown
GeneSetCollection
 names: GD:0046330, GD:0070304, ..., GD:0006140 (35 total)
 unique identifiers: 10912, 142679, ..., 9910 (166 total)
 types in collection:
    geneIdType: EntrezIdentifier (1 total)
    collectionType: NullCollection (1 total)
> imatUp <- t(incidence(gscUp))</pre>
> dim(imatUp)
[1] 467 542
> imatDown <- t(incidence(gscDown))</pre>
> dim(imatDown)
[1] 166 35
```

Perform a hierarchical clustering of genes and samples.

```
> cleanExpsDE <- cleanExps[DEgenes, ]
> sampleClustering <- hclust(as.dist(1-cor(cleanExpsDE, method="spearman")))
> geneClustering <- hclust(as.dist(1-cor(t(cleanExpsDE), method="pearson")))
> ord <- colnames(cleanExpsDE)[order.dendrogram(as.dendrogram(sampleClustering))]
> ord <- pData(frmaEsetFilt)[ord, "FIR"]
> names(ord) <- colnames(cleanExpsDE)[order.dendrogram(as.dendrogram(sampleClustering))]</pre>
```

To facilitate the display of functional enrichment information we pull GO term descriptions and abbreviate some of their words, such as *positive* to *pos.* or *regulation* to *reg.*, and remove preprositions *of* and *to*.

```
gt <- gsub("production", "prod.", gt)</pre>
    gt <- gsub("developmental", "dev.", gt)</pre>
    gt <- gsub("development", "dev.", gt)</pre>
    gt <- gsub("differentiation", "diff.", gt)</pre>
    gt <- gsub("cytokine-mediated", "cytok.", gt)</pre>
    gt <- gsub("lipopolysaccharide-mediated", "lipopolysacc.", gt)</pre>
    gt <- gsub("stress-activated", "stress-act.", gt)
    gt <- gsub("peptidyl-tyrosine", "pep.-tyr.", gt)</pre>
    gt <- gsub("signaling", "sig.", gt)</pre>
    gt <- gsub("pathway", "pwy.", gt)</pre>
    gt <- gsub("involved ", "", gt)
    gt <- gsub(" of ", " ", gt)
    gt <- gsub(" to ", " ", gt)
    gt <- gsub(" in ", " ", gt)
    gt
  }
> goTerms <- shortenGOterms(goTerms)</pre>
> funAnnotations <- list(up=imatUp, down=imatDown) ## genes x GO terms
> ## put back the original ranking order
> funAnnotations[["up"]] <- funAnnotations[["up"]][, match(colnames(funAnnotations[["up"]]),</pre>
                                                                reportOverGOBPdeGenesUp$GOBPID)]
> funAnnotations[["down"]] <- funAnnotations[["down"]][, match(colnames(funAnnotations[["down"]])</pre>
                                                                    reportOverGOBPdeGenesDown$GOBPID)
```

We cannot include in a single figure the names of all of the 1097 DE genes. For this reason, we select the top 60 DE genes with lowest p-value.

```
> selGenes <- ttDEgenes$ID[1:60]
> selGenesUp <- selGenes[selGenes %in% ttDEgenes$ID[ttDEgenes$logFC > 0]]
> selGenesDown <- selGenes[selGenes %in% ttDEgenes$ID[ttDEgenes$logFC < 0]]
> selGenesText <- getSYMBOL(selGenes, "org.Hs.eg.db")
> stopifnot(all(!is.na(selGenesText)))
```

Finally, we build an incidence matrix of the phenotypic data to facilitate their visualization across samples. We group phenotypic variables into those measuring labor-related features and those measuring infant-related features.

```
> phendata <- rbind(as.numeric(frmaEsetFilt$Elbw == "yes"),</pre>
                    as.numeric(frmaEsetFilt$Bpd == "yes"),
                    as.numeric(frmaEsetFilt$VentGT7days == "yes"),
                    as.numeric(frmaEsetFilt$02GE28days == "yes"),
                    as.numeric(frmaEsetFilt$Ivh == "yes"),
                    as.numeric(frmaEsetFilt$NecEnt == "yes"),
                    as.numeric(frmaEsetFilt$Rop == "yes"),
                    as.numeric(frmaEsetFilt$Pda == "yes"),
                    as.numeric(frmaEsetFilt$Sepsis == "yes"),
                    as.numeric(frmaEsetFilt$Ptl == "yes"),
                    as.numeric(frmaEsetFilt$Pih == "yes"),
                    as.numeric(frmaEsetFilt$Cs == "yes"),
                    as.numeric(frmaEsetFilt$Acs == "yes"),
                    as.numeric(frmaEsetFilt$Plate == "yes"),
                    as.numeric(frmaEsetFilt$Cord == "yes"),
                    as.numeric(frmaEsetFilt$Funisitis == "yes"),
                    as.numeric(frmaEsetFilt$Wmd == "yes"),
                    as.numeric(frmaEsetFilt$Cp == "yes"),
                    as.numeric(frmaEsetFilt$Mdi == "yes"),
```

```
as.numeric(frmaEsetFilt$Pdi == "yes")
)
> rownames(phendata) <- c("Elbw", "Bpd", "Ventilation", "Oxygen",
                          "Ivh", "NecEnt", "Rop", "Pda", "Sepsis",
                          "Pt1", "Pih", "Cs", "Acs", "Plate",
                          "Cord", "Funisitis", "Wmd", "Cp", "Mdi", "Pdi")
> colnames(phendata) <- colnames(frmaEsetFilt)
> phengroups <- list(Infant=c("Elbw", "Bpd", "Ventilation", "Oxygen", "NecEnt",
                         "Rop", "Pda", "Sepsis", "Pdi", "Mdi", "Cp", "Wmd", "Ivh"),
        Labor=c("Pt1", "Pih", "Cs", "Acs", "Plate", "Cord", "Funisitis"))</pre>
```

The resulting graphical representation is shown in Figure 14. Its left-hand side contains a heatmap of gene expression values after adjusting for unknown sources of variability with surrogate variables. On top of the heatmap we find a hierarchical clustering of the samples which shows that they cluster according to the FIR condition of the displayed DE genes. On the bottom of the heatmap we find an incidence matrix of different phenotypic variables were a black cell indicates the presence of that phenotypic in the corresponding samples. On the left of the heatmap there is a hierarchical clustering of the genes with color annotations for those with evidence of a regulatory role, concretely, transcription factors (violet) and RNA-binding proteins (green).

The right-hand side of the figure contains two incidence matrices stacked on top of each other, of genes (rows) by GO terms (columns). One of them shows GO terms enriched with up-regulated genes (bottom) and the other shows GO terms enriched with down-regulated genes (top). The horizontal lines of the grid layed over the two matrices represent a resolution of 25 genes per cell. Dots in these matrices correspond to genes, where red indicate up-regulation and blue down-regulation. To ease their display, their size is bigger (i.e., have lower resolution) than the scale of the vertical axis which corresponds to the clustered 1097 DE genes. On the right of these two matrices we find the top-60 DE genes with lowest p-value.



**Figure 14.** Integrated graphical representation of differential expression in between FIR and non-FIR infants, functional enrichment and phenotypic data.

We also perform a GO enrichment analysis among up and downregulated genes found by comparing

infants who were not administered with antenatal glucocorticoids (ACS) and showed the combination of FIR, IVH and WMD phenotype against those who did not have any of these three phenotypes.

```
> DEgenesFDR <- ttAllIQRfilt[ttAllIQRfilt$adj.P.Val < FDRcutoff, "ID"]</pre>
> maskUp <- ttAllIVHWMDnoACS$logFC > 0
> DEgenesUpIVHWMDnoACS <- intersect(ttAllIVHWMDnoACS[maskUp, "ID"], DEgenesIVHWMDnoACS)
> length(DEgenesUpIVHWMDnoACS)
[1] 256
> gUniverse <- ttAllIVHWMDnoACS[maskUp, "ID"]</pre>
> length(gUniverse)
[1] 10386
> GOparams <- new("GOHyperGParams", geneIds=DEgenesUpIVHWMDnoACS, universeGeneIds=gUniverse,
                  annotation="org.Hs.eg.db", ontology="BP",
                  pvalueCutoff=goAnalysisCondPvalueCutoff, conditional=TRUE,
                  testDirection="over")
> cache(hgOverGOBPdeGenesUpIVHWMDnoACS <- hyperGTest2(GOparams, minSizeCutoff=5,</p>
                                                       maxSizeCutoff=300, orCutoff=1.5),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> hgOverGOBPdeGenesUpIVHWMDnoACS
Gene to GO BP Conditional test for over-representation
3866 GO BP ids tested (285 have p < 0.01)
Selected gene set size: 235
    Gene universe size: 7316
    Annotation package: org.Hs.eg
> IQRs <- apply(exprs(cleanEsetIVHWMDnoACS)[gUniverse, ], 1, IQR)
> cache(reportOverGOBPdeGenesUpIVHWMDnoACS <- GOreport(hgOverGOBPdeGenesUpIVHWMDnoACS, minSize=5</pre>
                                                        minCount=5, minOddsRatio=1.5,
                                                        featureFilterValues=IQRs,
                                                        ff.R=1000, ff.prob=0.90, maxReported=Inf,
                                                        p.value=0.1, p.adjust.method="fdr",
                                                        highlightGenes=setdiff(DEgenesUpIVHWMDnoA
                                                        highlightStr="\\textbf{%s}"),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> dim(reportOverGOBPdeGenesUpIVHWMDnoACS)
```

```
[1] 70 10
```

We can find the results of the GO enrichment analysis for up-regulated genes in Table 15.

**Table 15.** Gene Ontology (GO) enrichment (biological process) of upregulated genes called differentially expressed (DE) at FDR <1% and with a minimum 1.5-fold change between FIR/IVH/WMD and non-FIR/nonIVH/nonWMD affected infants. Column "GeneSyms" contains the genes enriching the corresponding GO term, where those highlighted in boldface are not DE between FIR and nonFIR affected infants at FDR <1%, and therefore, their upregulation is specific to the joint FIR/IVH/WMD condition.

Term	OddsRatio	ExpCount	Count	Size	GeneSyms
oxygen transport	37.08	0.35	6	11	HBM, HBB, HBD, HBE1,
					HBQ1, HBZ
response to super-	19.22	0.42	5	13	<b>MPO</b> , SOD2, <b>PRDX2</b> , UCP2,
oxide					CD36
JAK-STAT cascade	13.97	0.51	5	16	JAK3, LYN, <b>MAPK1</b> , STAT3,
involved in growth					SOCS3
hormone signaling					
pathway					

	14810		54 <b>5</b>		P=0-
hydrogen peroxide catabolic process	12.81	0.55	5	17	GPX1, HBB, MPO, SNCA, PRDX2
defense response to fungus	10.97	0.61	5	19	<b>DEFA4</b> , <b>MPO</b> , S100A8, S100A9, S100A12
cellular response to growth hormone stimulus	10.97	0.61	5	19	JAK3, LYN, <b>MAPK1</b> , STAT3, SOCS3
platelet aggrega- tion	10.84	0.87	7	27	<b>DMTN, HBB, ITGA2B</b> , LYN, PDGFRA, PLEK, FERMT3
platelet degranula- tion	9.35	1.54	11	48	DMTN, ITGA2B, LYN, SERPINE1, PF4, SERPINA1, PLEK, PPBP, SRGN, TIMP1, CD36
glutathione metabolic pro- cess	8.08	0.77	5	24	PNKD, <b>GCLC</b> , <b>GPX1</b> , MGST1, SOD2
regulation of NF- kappaB import into nucleus	8.08	0.77	5	24	NFKBIA, <b>PPM1A</b> , PTGS2, BCL3, <b>TNFSF14</b>
regulation of mi- tochondrial mem- brane potential	8.08	0.77	5	24	GCLC, PID1, BCL2L1, SOD2, UCP2
cell chemotaxis	6.87	1.23	7	40	CXCL1, CXCL2, PDGFRA, PPBP, CCL8, CXCL6, CXCL5
T-helper 1 type im- mune response	6.39	0.93	5	29	JAK3, RELB, BCL3, SLC11A1, IL1RL1
leukocyte home- ostasis	6.37	1.12	6	35	CORO1A, JAK3, LYN, FOXP3, TNFAIP3, TNFSF14
neutrophil chemo- taxis	6.18	1.35	7	42	CXCL8, <b>MPP1</b> , TREM1, S100A8, S100A9, S100A12, CCL2
erythrocyte home- ostasis	6.09	1.77	9	55	KLF1,EPB42,DMTN,ALAS2,FECH,ANK1,HBZ,LYN,BPGM
positive regulation of inflammatory re- sponse	5.72	1.86	9	58	TNIP1,         OSM,         SERPINE1,           PTGS2,         S100A8,         S100A9,           S100A12,         IL1RL1,         OSMR
complement activa- tion	5.68	1.03	5	32	<b>RGCC</b> , <b>KRT1</b> , CFB, C1R, C1S
tetrapyrrole metabolic pro- cess	5.60	1.25	6	39	ALAS2, FECH, EIF2AK1, ANK1, SLC25A39, BLVRB
lipopolysaccharide- mediated signaling pathway	5.48	1.06	5	33	LYN, NFKBIA, <b>MAPK1</b> , CCL2, TNFAIP3
cellular response to lipopolysaccharide	5.37	1.29	6	41	ABCA1, CXCL8, <b>ARG1</b> , SER- PINE1, TNFRSF1B, CD36
iron ion transport	5.29	1.09	5	34	SLC39A14, SLC25A37, <b>ATP6V0C</b> , SLC11A1, TFRC
response to amino acid	5.27	1.54	7	48	GPX1,ARG1,LYN,PDGFRA,BCL2L1,CCL2,CPEB4CCL2,CCL2,

Table 15 – continued from previous page

	Table	15 continue	cu nom p	i cvious	page
leukocyte chemo- taxis	5.25	1.32	6	42	CORO1A, PF4, TREM1, <b>CXCL16</b> , S100A8, S100A9
regulation of	4.96	1.86	8	58	DMTN, KRT1, LYN, SER-
hemostasis					PINE1, PDGFRA, PLAUR,
grapulacyta migra	4.86	1.00	Q	50	PLEK, CD36 CYCL8 MDD1 TPFM1
tion	4.00	1.90	0	- 59	BAC2 S100A8 S100A9
01011					S100A12, CCL2
iron ion homeosta-	4.76	1.93	8	60	EPB42, ALAS2, FECH,
sis					SLC25A37, <b>ATP6V0C</b> ,
11 1	4 171	0.70	11	0.1	SLC11A1, SOD2, TFRC
cellular response to	4.71	2.70		84	ABCAI, CXCL8, ARGI,
biotic stillulus					MAPK1 CCL2 TNFAIP3
					TNFRSF1B, CD36
regulation of coagu-	4.67	1.96	8	61	DMTN, KRT1, LYN, SER-
lation					PINE1, PDGFRA, PLAUR,
					PLEK, CD36
homeostasis of	4.54	2.26	9	72	KLF1, EPB42, DMTN,
number of cells					ALAS2, FECH, ANKI, HBZ II 7B BBCM
response to hydro-	4 50	2.02	8	63	GPX1 HBB ABG1 MPO
gen peroxide	1.00	2.02			SNCA, SOD2, PRDX2, TN-
					FAIP3
defense response to	4.40	3.95	15	123	<b>DEFA4</b> , FGR, LYZ, MYO1F,
bacterium					SERPINE1, TREM1, PPBP,
					$\begin{array}{cccc} BCL3, & S100A8, & S100A9, \\ G100A10 & GVCLC & GLC11A1 \\ \end{array}$
					PCLVRP1 CD36
regulation of wound	4.37	2.34	9	73	DMTN. KRT1. LYN. SEB-
healing			Ŭ		PINE1, PDGFRA, PLAUR,
					PLEK, TNFAIP3, CD36
cytokine secretion	4.27	2.67	10	83	CHI3L1, ABCA1, FGR,
					RGCC, LYN, FOXP3,
					TREMI, SRGN, S100A12,
response to bac-	4 23	4 37	16	143	ABCA1 <b>GPX1</b> CXCL2
terium	4.20	1.01	10	110	CXCL8. ARG1. LYN. MGST1.
					MPO, NFKBIA, MAPK1,
					PTGS2, CCL2, <b>SNCA</b> , SOD2,
					TNFAIP3, TNFRSF1B
regulation of pro-	4.15	1.90	7	59	FBXO7, ASGR2, AHSP,
tein stability					DPM2
platelet activation	3 83	3 93	11	103	GNA15 SERPINE1 PE4
platelet activation	0.00	0.20		100	SERPINA1, APBB1IP, PPBP,
					SRGN, MAPK1, RAC2,
					TIMP1, CD36
negative regulation	3.78	2.06	7	64	GPX1, KRT1, SERPINE1,
ot response to					FOXP3, TNFAIP3, TN-
wounding					TADE 15, PGLY KP1

### Table 15 – continued from previous page

response to tumor necrosis factor	3.69	2.41	8	75	CHI3L1, CXCL8, PID1, PTGS2, CXCL16, CCL2, TNFRSF1B, YBX3
response to lipopolysaccha- ride	3.52	2.51	8	81	MGST1, <b>MPO</b> , PTGS2, S100A8, S100A9, SLC11A1, <b>SNCA</b> , SOD2
regulation of endo- cytosis	3.49	2.86	9	89	FGR, <b>DKK1</b> ,         SERPINE1,           PTX3,         CCL2,         SLC11A1, <b>SNCA</b> ,         CD36, <b>DNAJC6</b>
protein import into nucleus	3.45	3.21	10	100	JAK3, NFKBIA, <b>PPM1A</b> , <b>MAPK1</b> , PTGS2, BCL3, SLC11A1, STAT3, <b>TNFSF14</b> , CD36
nuclear import	3.45	3.21	10	100	JAK3, NFKBIA, <b>PPM1A</b> , <b>MAPK1</b> , PTGS2, BCL3, SLC11A1, STAT3, <b>TNFSF14</b> , CD36
myeloid leukocyte activation	3.38	3.28	10	102	FGR, CXCL8, LYN, MYO1F,           RELB, S100A12, SLC11A1,           SNCA, STXBP2, IL1RL1
myeloid cell differ- entiation	3.38	5.33	16	166	KLF1,         EPB42,         DMTN,           ALAS2,         FECH,         ANK1,           HBZ,         LYN,         MMP9,         NFK-           BIA,         PF4,         PIP4K2A,         TESC,           RELB,         BPGM,         TFRC
reactive oxygen species metabolic process	3.23	3.40	10	106	GPX1, HBB, MPO, PID1,           RAC2, SNCA, SOD2,           PRDX2, STK17A, CD36
cofactor metabolic process	3.20	4.14	12	129	NAMPT, ALAS2, ACSL1, FECH, RPIA, EIF2AK1, ANK1, SLC25A39, BLVRB, SNCA, TALDO1, ELOVL6
cellular response to peptide	3.19	4.88	14	152	KLF1, JAK3, ARG1, LYN, ADIPOR1, KLF3, ATP6V0C, PPM1A, PID1, STRADB, MAPK1, STAT3, UCP2, SOCS3
positive regulation of cell migration	3.17	5.27	15	164	CORO1A, <b>DMTN</b> , FGR, CXCL8, <b>ITGA2B</b> , LYN, MMP9, MYO1F, SERPINE1, PDGFRA, <b>MAPK1</b> , PTGS2, <b>CXCL16</b> , CCL2, <b>TNFSF14</b>
positive regulation of locomotion	3.14	5.69	16	177	CORO1A, DMTN, FGR, CXCL8, ITGA2B, LYN, MMP9, MYO1F, SERPINE1, PDGFRA, MAPK1, PTGS2, CXCL16, CCL2, TNFSF14, ARTN
positive regulation of cellular compo- nent movement	3.07	5.43	15	169	CORO1A, <b>DMTN</b> , FGR, CXCL8, <b>ITGA2B</b> , LYN, MMP9, MYO1F, SERPINE1, PDGFRA, <b>MAPK1</b> , PTGS2, <b>CXCL16</b> , CCL2, <b>TNFSF14</b>

Table 15 – continued from previous page

	Table	13 - continu	eu nom p	levious	page
wound healing	3.01	9.08	24	292	FGR, <b>FGFR1OP2</b> , GNA15, <b>HBB</b> , <b>HBD</b> , <b>HBE1</b> , <b>HPS1</b> , <b>ITGA2B</b> , NFE2, <b>NINJ2</b> , PF4, SERPINA1, TREM1, APBB1IP, PPBP, SRGN, <b>MAPK1</b> , CD177, RAC2, S100A8, SLC11A1, <b>BSG</b> ,
					TIMP1, FERMT3
negative regulation of endopeptidase activity	2.97	4.05	11	126	CDKN2D, SERPINA3, CSTA, GPX1, FURIN, SERPINE1, SERPINA1, SIAH2, SNCA, TIMP1, TNFSF14
coagulation	2.91	7.70	20	246	FGR,         GNA15,         HBB,         HBD,           HBE1,         HPS1,         ITGA2B,           NFE2,         PF4,         SERPINA1,           TREM1,         APBB1IP,         PPBP,           SRGN,         MAPK1,         CD177,           RAC2,         BSG,         TIMP1,
hemostasis	2.84	7.85	20	251	FGR, GNA15, <b>HBB</b> , <b>HBD</b> , <b>HBE1</b> , <b>HPS1</b> , <b>ITGA2B</b> , NFE2, PF4, SERPINA1, TREM1, APBB1IP, PPBP, SRGN, <b>MAPK1</b> , CD177, RAC2, <b>BSG</b> , TIMP1, FERMT3
multicellular organ- ismal homeostasis	2.83	4.63	12	144	CORO1A, SERPINA3, AMPD3, GPX1, KRT1, LYZ, PTGS2, RAC2, SLC11A1, STAT3, TFRC, TNFAIP3
regulation of apop- totic signaling pathway	2.82	5.85	15	182	CDKN2D, GCLC, GPX1, JAK3, OSM, SERPINE1, PF4, STRADB, BCL2L1, S100A8, S100A9, SIAH2, SOD2, TN- FAIP3, YBX3
nuclear transport	2.79	4.69	12	146	NUDT4,         JAK3,         NFK-           BIA, <b>PPM1A</b> , <b>STRADB</b> , <b>MAPK1</b> ,         PTGS2,         BCL3,           SLC11A1,         STAT3, <b>TNFSF14</b> ,           CD36
cellular response to oxygen-containing compound	2.73	6.45	16	215	DMTN, FECH, SPIDR, GPX1, HBB, PIM3, MGST1, MPO, PDGFRA, TESC, PTGS2, BCL2L1, SNCA, SOD2, PRDX2, CPEB4
response to oxida- tive stress	2.68	4.86	12	153	SESN3, GCLC, HBB, ARG1, KRT1, MPO, PTGS2, SNCA, SOD2, PRDX2, TNFAIP3, UCP2

Table 15 – continued from previous page

					0-
regulation of cy- tokine production	2.67	9.60	23	299	FGR, SULF1, ACKR1, <b>RGCC</b> , JAK3, LTB, LYN, NFKB2, NFKBIA, <b>FURIN</b> , SER- PINE1, <b>FOXP3</b> , PF4, SRGN, <b>ZC3HAV1</b> , PTGS2, BCL3, CCL2, SLC11A1, TNFAIP3, <b>PGLYRP1</b> , IL1RL1, CD36
protein targeting	2.64	6.20	15	193	DMTN,         FBXO7,         ANK1,           JAK3,         NFKBIA,         PPM1A,           TESC,         MAPK1,         PTGS2,           BCL3,         SLC11A1,         STAT3,         BSG,           TNFSF14,         CD36         CD36         CD36
negative regulation of cellular protein metabolic process	2.64	7.07	17	220	CDKN2D, CSTA, DMTN, DKK1, FBXO7, EIF2AK1, GCLC, LYN, FURIN, FOXP3, TESC, PID1, SNCA, TIMP1, TNFAIP3, SOCS3, GMFG
single organismal cell-cell adhesion	2.60	6.30	15	196	TNIP1,         CSTA,         DMTN,           RGCC,         HBB,         ICAM3,           ITGA2B,         LYN,         NINJ2,           PDGFRA,         PLEK,         RAC2,           S100A8,         S100A9,         FERMT3
leukocyte mediated immunity	2.59	5.01	12	156	FGR, <b>IL7R</b> , JAK3, LYN, MYO1F, <b>FOXP3</b> , TREM1, BCL3, SLC11A1, STXBP2, C1R, C1S
negative regulation of transport	2.57	6.36	15	198	DMTN,         RGCC,         PIM3,           MMP9,         NFKBIA,         OSM,           FOXP3,         PPM1A,         PID1,           SRGN,         PTGS2,         SNCA,         UCP2,           TNFSF14,         CD36
cell-type specific apoptotic process	2.49	7.00	16	218	E2F2,         GCLC,         GPX1,           RGCC,         JAK3,         LYN,         SER-           PINE1,         BCL2L1,         CCL2,           SNCA,         SOD2,         PRDX2,         TN-           FAIP3,         CPEB4,         STK17A,         CDC34
negative regula- tion of phosphate metabolic process	2.49	5.65	13	176	TNIP1, CDKN2D, DMTN, DKK1, FBXO7, LYN, PLEK, TESC, PID1, SNCA, SOCS3, GMFG, CDA
regulation of pro- tein transport	2.40	6.30	14	196	DMTN, FGR, RGCC, LYN, NFKBIA, OAZ1, FOXP3, PPM1A, SRGN, PTGS2, BCL3, TNFSF14, IL1RL1, CD36
response to cy- tokine	2.32	8.44	18	270	CORO1A, ACSL1, ACKR1, IL1R1, <b>IL7R</b> , JAK3, <b>ARG1</b> , <b>ADIPOR1</b> , PF4, <b>MAPK1</b> , <b>BCL2L1</b> , SLC11A1, <b>SNCA</b> , TIMP1, IL1R2, SOCS3, IL1RL1, OSMR

Table 15 – continued from previous page	previous page	from	- continued	15 -	Table
-----------------------------------------	---------------	------	-------------	------	-------

Next, we carry out the GO enrichment analysis for the significantly down-regulated genes between FIR/IVH/WMD infants and those without any of those phenotypes and who were not administered with ACS.

```
> maskDown <- ttAllIVHWMDnoACS$logFC < 0</pre>
    > DEgenesDownIVHWMDnoACS <- intersect(ttAllIVHWMDnoACS[maskDown, "ID"], DEgenesIVHWMDnoACS)</pre>
    > length(DEgenesDownIVHWMDnoACS)
    [1] 310
    > gUniverse <- ttAllIVHWMDnoACS[maskDown, "ID"]</pre>
    > length(gUniverse)
    [1] 9769
    > GOparams <- new("GOHyperGParams", geneIds=DEgenesDownIVHWMDnoACS, universeGeneIds=gUniverse,
                      annotation="org.Hs.eg.db", ontology="BP",
                      pvalueCutoff=goAnalysisCondPvalueCutoff, conditional=TRUE,
                      testDirection="over")
    > cache(hgOverGOBPdeGenesDownIVHWMDnoACS <- hyperGTest2(GOparams, minSizeCutoff=5,</p>
                                                              maxSizeCutoff=300, orCutoff=1.5),
            dir=cacheDir_FE, prefix=cachePrefix_FE)
    > hgOverGOBPdeGenesDownIVHWMDnoACS
    Gene to GO BP Conditional test for over-representation
    3284 GO BP ids tested (58 have p < 0.01)
    Selected gene set size: 260
        Gene universe size: 7370
        Annotation package: org.Hs.eg
    > IQRs <- apply(exprs(cleanEsetIVHWMDnoACS)[gUniverse, ], 1, IQR)
    > cache(reportOverGOBPdeGenesDownIVHWMDnoACSFDR10 <- GOreport(hgOverGOBPdeGenesDownIVHWMDnoACS,</p>
                                                                    minSize=5, maxSize=300,
                                                                    minCount=5, minOddsRatio=1.5,
                                                                    featureFilterValues=IQRs,
                                                                    ff.R=1000, ff.prob=0.90, maxReporte
                                                                    p.value=0.1, p.adjust.method="fdr"
                                                                    highlightGenes=setdiff(DEgenesDown)
                                                                    highlightStr="\\textbf{%s}"),
            dir=cacheDir_FE, prefix=cachePrefix_FE)
    > dim(reportOverGOBPdeGenesDownIVHWMDnoACSFDR10)
    [1] 0 10
As we can see, no enriched GO terms can be found among down-regulated genes. Let's do the analysis
again increasing the FDR cutoff up to 20%.
    > cache(reportOverGOBPdeGenesDownIVHWMDnoACS <- GOreport(hgOverGOBPdeGenesDownIVHWMDnoACS,</p>
                                                               minSize=5, maxSize=300,
                                                               minCount=5, minOddsRatio=1.5,
                                                               featureFilterValues=IQRs,
                                                               ff.R=1000, ff.prob=0.90, maxReported=In:
```

p.value=0.2, p.adjust.method="fdr", highlightGenes=setdiff(DEgenesDownIVHWM)

highlightStr="\\textbf{%s}"),

```
dir=cacheDir_FE, prefix=cachePrefix_FE)
> dim(reportOverGOBPdeGenesDownIVHWMDnoACS)
```

```
[1] 2 10
```

This time, 2 GO terms are significantly enriched at 20% FDR and its description can be found in Table 16.

**Table 16.** Gene Ontology (GO) enrichment (biological process) of downregulated genes called differentially expressed (DE) at FDR <1% and with a minimum 1.5-fold change between FIR/IVH/WMD and non-FIR/nonIVH/nonWMD affected infants. Column "GeneSyms" contains the genes enriching the corresponding GO term, where those highlighted in boldface are not DE between FIR and nonFIR affected infants at FDR <1%, and therefore, their downregulation is specific to the joint FIR/IVH/WMD condition.

Term	OddsRatio	ExpCount	Count	Size	GeneSyms
negative regulation	5.93	1.41	7	40	FGF13, FGFR3, <b>BCL11A</b> ,
of neurogenesis					PTK2, BMPR1A, HOOK3,
					ULK2
negative regulation	5.44	1.52	7	43	DLC1, PLEKHH2, FGF13,
of cytoskeleton or-					KANK1, $\mathbf{CKAP2}$ , APC,
ganization					ARHGAP6

## 4.2 Enrichment of DE genes in immune reponse pathways

We assess enrichment of DE genes in pathways involved in the immune response. For this purpose we use gene sets describing innate inflammatory pathways defined in (11), from where we excluded the apoptosis signaling gene set. We also include a gene set describing the adaptive inflammatory pathway of the Th17 cell response defined in (12).

```
> library(xlsx)
> cache(inflamGenesPwys <- read.xlsx("annotData/LozaChang07_WFINFLAMtableS1.xls",</p>
                                      sheetIndex=1, startRow=2, stringsAsFactors=FALSE,
                                      check.names=FALSE),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> head(inflamGenesPwys)
 geneID chrom Trasciption_Start Trasciption_End
  PTPRU
          chr1
                        29383643
                                         29473927
1
  VCAM1
2
          chr1
                       100897317
                                        100916620
3
    CD58 chr1
                       116769198
                                        116825645
4
     CD2
          chr1
                       117009143
                                        117023892
5
   MUC1
          chr1
                       151971671
                                        151975732
                                        155989361
6
   DARC
                       155987582
          chr1
 5kb upstream of trasciption_Start 2kb downstream of trasciption_End
1
                           29378643
                                                               29475927
2
                           100892317
                                                              100918620
3
                           116767198
                                                              116830645
4
                           117004143
                                                              117025892
5
                           151969671
                                                              151980732
6
                           155982582
                                                              155991361
                                        PROTEIN
                                                                  Primary Pathway
1 Protein tyrosine phosphatase receptor type U Adhesion-Extravasation-Migration
2
                                          VCAM1 Adhesion-Extravasation-Migration
3
                                           CD58 Adhesion-Extravasation-Migration
4
                                            CD2 Adhesion-Extravasation-Migration
5
                                 CD227, mucin-1 Adhesion-Extravasation-Migration
6
         Duffy blood group, chemokine receptor Adhesion-Extravasation-Migration
                     Secondary Pathway # of tSNPs in gene_CEU
                        MAPK signaling
1
                                                             19
2
                                   <NA>
                                                             12
3
                   Leukocyte signaling
                                                              4
4
                   Leukocyte signaling
                                                              6
5
                                   <NA>
                                                              1
```

```
6 G-Protein Coupled Receptor Signaling
                                                             5
  # of tSNPs in gene_YRI
1
                      39
2
                      33
3
                      17
4
                       9
5
                       3
6
                       1
> inflamGenesPwys <- inflamGenesPwys[, c("geneID", "PROTEIN", "Primary Pathway",</p>
                                       "Secondary Pathway")]
> head(inflamGenesPwys)
  geneID
                                               PROTEIN
1 PTPRU Protein tyrosine phosphatase receptor type U
2 VCAM1
                                                 VCAM1
3
   CD58
                                                  CD58
4
    CD2
                                                   CD2
5
   MUC1
                                        CD227, mucin-1
6
   DARC
                Duffy blood group, chemokine receptor
                   Primary Pathway
                                                       Secondary Pathway
1 Adhesion-Extravasation-Migration
                                                          MAPK signaling
2 Adhesion-Extravasation-Migration
                                                                     <NA>
3 Adhesion-Extravasation-Migration
                                                     Leukocyte signaling
4 Adhesion-Extravasation-Migration
                                                     Leukocyte signaling
5 Adhesion-Extravasation-Migration
                                                                     <NA>
6 Adhesion-Extravasation-Migration G-Protein Coupled Receptor Signaling
> dim(inflamGenesPwys)
[1] 1027
            4
> unique(inflamGenesPwys$"Primary Pathway")
 [1] "Adhesion-Extravasation-Migration"
 [2] "Apoptosis Signaling"
 [3] "Apoptosis signaling"
 [4] "Calcium Signaling"
 [5] "Complement Cascase"
 [6] "Cytokine signaling"
 [7] "Eicosanoid Signaling"
 [8] "Glucocorticoid/PPAR signaling"
 [9] "G-Protein Coupled Receptor Signaling"
[10] "Innate pathogen detection"
[11] "Leukocyte signaling"
[12] "MAPK signaling"
[13] "Natural Killer Cell Signaling"
[14] "NF-kB signaling"
[15] "Phagocytosis-Ag presentation"
[16] "PI3K/AKT Signaling"
[17] "ROS/Glutathione/Cytotoxic granules"
[18] "TNF Superfamily Signaling"
> length(unique(inflamGenesPwys$"Primary Pathway"))
[1] 18
> unique(inflamGenesPwys$"Secondary Pathway")
 [1] "MAPK signaling"
 [2] NA
 [3] "Leukocyte signaling"
 [4] "G-Protein Coupled Receptor Signaling"
 [5] "PI3K/AKT Signaling"
```

```
164
```

```
[6] "TNF Superfamily Signaling"
[7] "NF-kB signaling"
[8] "Glucocorticoid/PPAR signaling"
[9] "Apoptosis Signaling"
[10] "Innate pathogen detection"
[11] "Glucocorticoid signaling"
[12] "Apoptosis signaling"
[13] "Natural Killer Cell Signaling"
[14] "Cytokine signaling"
[14] "Cytokine signaling"
> length(unique(inflamGenesPwys$"Secondary Pathway"))
[1] 14
> length(unique(inflamGenesPwys$geneID))
[1] 1027
```

We have to first fix words that differ by letter capitalization and a couple of features in the gene idenfiers stored in the geneID column, such as remove spaces and replace uppercase ORF by lowercase orf:

We first try to map the identifiers in the geneID column to Entrez identifiers as HGNC official symbols:

There are 60 genes whose symbols cannot be mapped to Entrez gene identifiers. We are going to try map those using aliases for these gene symbols, as follows.

There is (are) still 1 gene(s) whose symbols cannot be mapped to Entrez gene identifiers. The PROTEIN column in the original file seems to contain the description of the function and also sometimes an alternative symbol for the gene or protein. We are going to try to map this to an alias.

So, there is finally 0 gene(s) whose symbols cannot be mapped to Entrez gene identifiers. We rebuild now the table of inflammatory genes and pathways anchoring them at Entrez gene identifiers.

```
> egIDsFromSymbols <- egIDsFromSymbols[!is.na(egIDsFromSymbols$ENTREZID), ]</pre>
> egIDsFromAliases <- egIDsFromAliases[!is.na(egIDsFromAliases$ENTREZID), ]</pre>
> inflamGenesPwys1 <- merge(inflamGenesPwys, egIDsFromSymbols, by.x="geneID", by.y="SYMBOL")</pre>
> inflamGenesPwys2 <- merge(inflamGenesPwys, egIDsFromAliases, by.x="geneID", by.y="ALIAS")</pre>
> maskNAs <- is.na(match(inflamGenesPwys$geneID,</pre>
                          c(inflamGenesPwys1$geneID, inflamGenesPwys2$geneID)))
> inflamGenesPwys <- rbind(inflamGenesPwys1, inflamGenesPwys2,</pre>
                            cbind(inflamGenesPwys[maskNAs, ],
                                  ENTREZID=rep(NA_character_, times=sum(maskNAs))))
> inflamGenesPwys <- unique(inflamGenesPwys[, c("ENTREZID", "Primary Pathway",</pre>
                                                  "Secondary Pathway")])
> inflamGenesPwys <- data.frame(EntrezID=inflamGenesPwys$ENTREZID,</pre>
                                 Symbol=select(org.Hs.eg.db, columns="SYMBOL",
                                                keys=inflamGenesPwys$ENTREZID,
                                                keytype="ENTREZID")$SYMBOL,
                                 PrimaryPathway=inflamGenesPwys$"Primary Pathway",
                                 SecondaryPathway=inflamGenesPwys$"Secondary Pathway",
                                 stringsAsFactors=FALSE)
> dim(inflamGenesPwys)
[1] 1034
            4
> head(inflamGenesPwys)
 EntrezID Symbol
                                     PrimaryPathway SecondaryPathway
    53947 A4GALT
                                Apoptosis Signaling
                                                                  <NA>
1
                                Leukocyte Signaling
2
        25 ABL1
                                                                  <NA>
3
      1636
              ACE
                                 Cytokine Signaling
                                                                  <NA>
4
     22985 ACIN1
                                Apoptosis Signaling
                                                                  <NA>
5
      6868 ADAM17
                                 Cytokine Signaling
                                                                  <NA>
       101 ADAM8 Adhesion-Extravasation-Migration
                                                                  <NA>
6
```

To have a set of inflammatory pathways involved exclusively in the innate immune response we are going to exclude the "Apoptosis Signaling pathway" and stored it separately as a targeted gene set.

```
> apopGenes <- inflamGenesPwys[grep("Apoptosis", inflamGenesPwys$PrimaryPathway), "EntrezID"]
> head(apopGenes)
[1] "53947" "22985" "317" "572" "578" "581"
> length(apopGenes)
[1] 69
> inflamGenesPwys <- inflamGenesPwys[-grep("Apoptosis", inflamGenesPwys$PrimaryPathway), ]
> dim(inflamGenesPwys)
[1] 965      4
> save(apopGenes, file=file.path("annotData", "apopGenes.RData"))
```

Now we import a gene set defining the Th17 cell response described in (12), which in this case corresponds to an adaptive inflammatory pathway.

```
> th17Genes <- read.xlsx(file.path("annotData", "CiofaniLittman12_th17GenesTableS1.xlsx"),
                         sheetIndex=1, stringsAsFactors=FALSE)
> head(th17Genes)
   Gene Gene.type Effect
                                                       PMID
                                       18362915, 18362914
1
  AHR
                 TF positive
2 Batf
                  TF positive
                                                  19578362
3 Bc13
                  TF negative
                                                  20622172
4 BCL6
                  TF negative 19628815, 19631565, 20212093
                               19050256, 18025126
5 CCL20 chemokine positive
6 Ccr6 cell surface positive
                                       19050256, 18025126
                                                                    Evidence
1
                                                                  deficiency
2
                                                                  deficiency
3
                                                                  deficiency
4
                                                                  deficiency
5 ligand deficiency, recombinant protein, neutralizing antibody to receptor
                                          deficiency, neutralizing antibody
6
> th17Genes$Gene <- gsub(" ", "", toupper(th17Genes$Gene))</pre>
> th17Genes <- unique(th17Genes$Gene)</pre>
> sym2eg <- select(org.Hs.eg.db, keys=th17Genes, columns="ENTREZID", keytype="SYMBOL")
> sym2eg <- split(sym2eg$ENTREZID, sym2eg$SYMBOL)</pre>
> sym2eg <- sapply(sym2eg,</pre>
                   function(x, tt) {
                     if (any(!is.na(x))) {
                       lfc <- abs(tt$logFC)[tt$ID %in% x]</pre>
                       if (length(lfc) > 0)
                         x <- tt$ID[tt$ID %in% x][which.max(lfc)]</pre>
                       else
                         x <- x[1]
                     }
                     х
                   }, ttAll)
> th17Genes <- sym2eg
> head(th17Genes)
    AHR BATF
                  BCL3
                          BCL6
                                 CCL20
                                         CCR6
  "196" "10538"
                          "604" "6364" "1235"
                  "602"
> length(th17Genes)
[1] 73
> head(inflamGenesPwys)
  EntrezID Symbol
                                        PrimaryPathway SecondaryPathway
2
        25
             ABL1
                                   Leukocyte Signaling
                                                                    <NA>
3
      1636
             ACE
                                    Cytokine Signaling
                                                                    <NA>
5
      6868 ADAM17
                                    Cytokine Signaling
                                                                    <NA>
6
      101 ADAM8
                     Adhesion-Extravasation-Migration
                                                                    <NA>
       107 ADCY1 G-Protein Coupled Receptor Signaling
7
                                                                    <NA>
       108 ADCY2 G-Protein Coupled Receptor Signaling
                                                                    <NA>
8
> dim(inflamGenesPwys)
[1] 965
          4
> inflamGenesPwys <- rbind(inflamGenesPwys,</pre>
                           data.frame(EntrezID=th17Genes, Symbol=names(th17Genes),
                                      PrimaryPathway=rep("Th17 cell response",
                                                          length(th17Genes)),
```

Store as a text file the set of innate and adaptive inflammatory pathways.

Finally, we perform Fisher's exact tests to assess enrichment of these pathways by the lists of signifincantly up and down regulated genes.

```
> table(inflamGenesPwys$PrimaryPathway)
    Adhesion-Extravasation-Migration
                                                            Calcium Signaling
                                   145
                                                                            14
                   Complement Cascase
                                                           Cytokine Signaling
                                    40
                                                                           172
                                               Glucocorticoid/PPAR Signaling
                 Eicosanoid Signaling
                                    39
                                                                            21
G-Protein Coupled Receptor Signaling
                                                   Innate pathogen detection
                                    42
                                                                            51
                  Leukocyte Signaling
                                                               MAPK Signaling
                                   122
                                                                           118
       Natural Killer Cell Signaling
                                                              NF-kB Signaling
                                    32
                                                                            33
        Phagocytosis-Ag presentation
                                                           PI3K/AKT Signaling
                                    39
                                                                            37
  ROS/Glutathione/Cytotoxic granules
                                                           Th17 cell response
                                    22
                                                                            73
           TNF Superfamily Signaling
                                    38
> genesByPwys <- split(as.character(inflamGenesPwys$EntrezID),</pre>
                        inflamGenesPwys$PrimaryPathway)
> iPwys <- do.call("GeneSetCollection",</pre>
                    mapply(function(geneSetID, geneIDs) {
                      GeneSet(EntrezIdentifier("org.Hs.eg.db"),
                        geneIds=geneIDs,
                        setName=geneSetID)
                    }, names(genesByPwys),
                    genesByPwys, USE.NAMES=FALSE))
> funEnrichment <- function(gsc, genes, universe, minsize=1) {</pre>
    stopifnot(all(genes %in% universe))
    ans <- lapply(gsc, function(geneSet, genes, universe) {</pre>
                            N <- length(universe)</pre>
                            m <- length(intersect(geneIds(geneSet), universe))</pre>
                            n <- length(genes)</pre>
                            k <- length(intersect(geneIds(geneSet), genes))</pre>
                            t \le array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2))
                            ans <- fisher.test(t, alternative="greater")</pre>
                            c(OddsRatio=as.vector(ans$estimate),
                               Pvalue=ans$p.value, Counts=k, Size=m)
                          }, genes, gUniverse)
    ans <- as.data.frame(do.call("rbind", ans))</pre>
    rownames(ans) <- names(gsc)</pre>
    ans <- cbind(ans, FDR=p.adjust(ans$Pvalue, method="fdr"))</pre>
```

```
mask <- ans$Counts >= minsize
    ans <- ans[mask, ]</pre>
    ans[order(ans$OddsRatio, decreasing=TRUE), ]
 }
> DEgenesUp <- DEgenes[ttAllIQRfilt[DEgenes, "logFC"] > 0]
> gUniverse <- ttAll[ttAll$logFC > 0, "ID"]
> iPwysFEup <- funEnrichment(iPwys, DEgenesUp, gUniverse, minsize=5)
> iPwysFEup
                                   OddsRatio
                                                   Pvalue Counts Size
Complement Cascase
                                    8.387679 3.336885e-06
                                                              10
                                                                   31
                                                              41 135
Cytokine Signaling
                                    8.057515 2.416246e-20
TNF Superfamily Signaling
                                   7.536651 2.025035e-05
                                                              9
                                                                   30
ROS/Glutathione/Cytotoxic granules 7.284081 1.686958e-03
                                                              5
                                                                   17
Th17 cell response
                                   7.031938 1.123693e-08
                                                              17
                                                                   60
Adhesion-Extravasation-Migration
                                   6.847685 1.083382e-14
                                                              32 117
NF-kB Signaling
                                   6.815932 2.789349e-04
                                                             7
                                                                  25
Innate pathogen detection
                                 6.069035 3.219721e-05
                                                             10
                                                                   39
Leukocyte Signaling
                                  5.647744 1.129649e-09
                                                              23
                                                                   96
                                                             6
                                                                   28
Eicosanoid Signaling
                                   4.770669 3.428558e-03
                                                             5
                                 3.232718 2.802634e-02
Phagocytosis-Ag presentation
                                                                   32
MAPK Signaling
                                   2.412985 2.623691e-02
                                                             8
                                                                   66
                                            FDR
Complement Cascase
                                  1.134541e-05
Cytokine Signaling
                                  4.107618e-19
TNF Superfamily Signaling
                                   5.737599e-05
ROS/Glutathione/Cytotoxic granules 3.186477e-03
Th17 cell response
                                  4.775697e-08
Adhesion-Extravasation-Migration 9.208749e-14
NF-kB Signaling
                                  5.927366e-04
Innate pathogen detection
                                  7.819322e-05
Leukocyte Signaling
                                  6.401346e-09
Eicosanoid Signaling
                                  5.828549e-03
Phagocytosis-Ag presentation
                                  3.970398e-02
MAPK Signaling
                                  3.970398e-02
> DEgenesDown <- DEgenes[ttAllIQRfilt[DEgenes, "logFC"] < 0]</pre>
> gUniverse <- ttAll[ttAll$logFC < 0, "ID"]</pre>
> iPwysFEdown <- funEnrichment(iPwys, DEgenesDown, gUniverse, minsize=5)
> iPwysFEdown
[1] OddsRatio Pvalue
                       Counts
                                  Size
                                            FDR
<0 rows> (or 0-length row.names)
```

The previous enrichment analysis with the Fisher's exact test shows that there are no inflammatory gene sets with at least 5 significant down-regulated genes, and 12 are enriched for significant up-regulated genes at a FDR < 10%.

In Figure 15 we have the expression values of the DE genes annotated to each of the enriched pathways, compared between FIR and non-FIR samples.

We are going to assess now whether all these inflammatory pathways together are enriched for DE genes. We consider first as DE all genes with significant expression changes at FDR < 1%:



Figure 15. Expression values of genes belonging to inflammatory pathways significantly enriched by genes called DE between FIR and nonaffected-FIR infants at FDR<1% and minimum 1.5-fold change.

```
> k <- length(intersect(sigGenes, unique(unlist(genesByDEiPwys, use.names=FALSE))))</pre>
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),</pre>
             dimnames=list(InflamSenesc=c("in", "out"), DE=c("yes", "no")))
> t
            DE
InflamSenesc yes
                     no
             308
                    514
         in
         out 3588 15745
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
2.319274
               Inf
sample estimates:
odds ratio
 2.629564
```

Thus, DE inflammatory pathways are enriched for DE genes at FDR<1%. Let's test now for up-regulated genes significantly DE at the same level:

```
> sigGenes <- ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < FDRcutoff & ttAllIQRfilt$logFC > 0]
> N <- nrow(ttAll[ttAll$logFC > 0, ])
> m <- length(intersect(unique(unlist(genesByDEiPwys, use.names=FALSE)),</pre>
                        ttAll$ID[ttAll$logFC > 0]))
> n <- length(sigGenes)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC > 0],
                        intersect(sigGenes, unique(unlist(genesByDEiPwys, use.names=FALSE)))))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(InflamSenesc=c("in", "out"), DE=c("yes", "no")))
> t
            DE
InflamSenesc yes
                    no
             265 369
         in
         out 1214 9020
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 4.611766
               Tnf
sample estimates:
odds ratio
  5.334608
```

Up-regulated genes at FDR<1% enrich significantly DE inflammatory pathways with a larger odds ratio than all up and down regulated genes. Finally, let's test for up-regulated DE genes at FDR<1% and with a minimum 1.5-fold change:

```
> m <- length(intersect(unique(unlist(genesByDEiPwys, use.names=FALSE)), ttAll$ID[ttAll$logFC > (
> n <- length(sigGenes)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC > 0],
                        intersect(sigGenes, unique(unlist(genesByDEiPwys, use.names=FALSE)))))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(Inflammatory=c("in", "out"), DE=c("yes", "no")))
> t
            DF.
Inflammatory yes
                   no
         in 159 475
         out 433 9801
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value < 2.2e-16
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
6.342848
               Inf
sample estimates:
odds ratio
 7.574603
```

Inflammatory pathways show again a significant enrichment for genes called DE at FDR<1% and with a minimum 1.5-fold change with a larger odds ratio than the other two subsets of DE genes.

We cross-classify the set of significantly up-regulated DE genes into the different inflammatory pathways they enrich. This cross-classification is shown in Table 17.

#### 4.3 Enrichment of DE genes in apoptosis and senescence pathways

We import gene sets associated to different related senescence pathways defined in the PathCards database (13). The gene sets defining these pathways were downloaded from (14).

```
> if (!file.exists(file.path("annotData", "sncPwys.RData"))) {
    sncPwys <- vector(mode="list", length=4)</pre>
    for (i in 1:4)
      sncPwys[[i]] <- read.xlsx(file.path("annotData", "senescenceGeneSetCompletePathCards.xls")</pre>
                                sheetIndex=i, stringsAsFactors=FALSE, header=FALSE)
    sncPwys <- lapply(sncPwys, unlist, use.names=FALSE)</pre>
    sncPwys <- lapply(sncPwys, function(x) { x <- x[!is.na(x)] ; x <- unique(gsub(" ", "", x)) ;</pre>
    names(sncPwys) <- c("CellularResponseStress", "CellularSenescence", "OxidativeStressInduced"</pre>
    sncPwys <- lapply(sncPwys, function(x) {</pre>
                         x <- select(org.Hs.eg.db, keys=x, columns="ENTREZID", keytype="SYMBOL")</pre>
                         missingIDs <- x$SYMBOL[is.na(x$ENTREZID)]</pre>
                          entrezIDs <- x$ENTREZID[!is.na(x$ENTREZID)]</pre>
                          if (length(grep("ENSG", missingIDs)) > 0) {
                            ensgmissingIDs <- missingIDs[grep("ENSG", missingIDs)]</pre>
                            missingIDs <- missingIDs[-grep("ENSG", missingIDs)]</pre>
                            y <- select(org.Hs.eg.db, keys=ensgmissingIDs, columns="ENTREZID", keys
                            entrezIDs <- c(entrezIDs, y$ENTREZID[!is.na(y$ENTREZID)])</pre>
                            missingIDs <- c(missingIDs, y$ENSEMBL[is.na(y$ENTREZID)])</pre>
                         }
                          if (length(missingIDs) > 0) {
                            y <- select(org.Hs.eg.db, keys=missingIDs, columns="ENTREZID", keytype=
                            entrezIDs <- c(entrezIDs, y$ENTREZID)</pre>
```

**Table 17.** Significantly upregulated genes called differentially expressed at FDR <1% with a minimum 1.5-fold change cross-classified into inflammatory pathways selected by enrichment analysis at FDR <10% and OR >1.5.

Pathway	OR	P.value	Counts	Size	Genes
Complement Cascase	8.40	3.3e-06	10	31	C1R, C1S, C3, C3AR1, C5AR1, CD55,
					CFB, CFP, SERPINA1, SERPINE1
Cytokine Signaling	8.10	2.4e-20	41	135	CEBPB, CSF1R, CSF2RB, CSF3,
					CSF3R, CXCL8, CXCR2, IFNAR2,
					IFNGR1, IFNGR2, IL10RA, IL17RA,
					IL18R1, IL18RAP, IL1A, IL1B,
					IL1R1, IL1R2, IL1RL1, IL1RN, IL32,
					IL4R, IL6, IL6ST, IRF1, JAK3, LIF,
					NFIL3, NML OSM, OSMR, PDGFRA,
					PTPN2, S100A12, S100A8, S100A9,
					SOCS1 SOCS3 STAT3 TGFBB2
					VEGFA
TNF Superfamily Signal-	7 50	2.0e-05	9	30	PTX3 TNFAIP3 TNFAIP6 TN-
ing	1.00	2.00 00			FRSF11B TNFRSF1B TNFSF13B
ing					TNESE15 TNIP1 TRAF3
BOS/Clutathiono/Cytotoy	ic 7 30	1 70 03	5	17	ANDED CVBB CDY3 NCE2 SOD2
granulos	1.50	1.76-05	0	11	$\begin{bmatrix} ANI \ EI \ , \ O \ I \ BD \ , \ OI \ XS \ , \ NOF \ 2 \ , \ SOD \ 2 \end{bmatrix}$
Th17 cell response	7.00	1 10 09	17	60	PCI 2 PCI 6 CCI 20 HIE1A
1117 cen response	1.00	1.16-00	11	00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					IFNGRI, ILIRI, IIGB2, JAK3,
					LIF, NFKBI, NFKBIZ, PIGER4,
					SOUSI, SOUSI, STATI, TGFBR2,
					VDR
Adhesion-Extravasation-	6.80	1.1e-14	32	117	ACKRI, ADAM8, CCL2, CCL20,
Migration					CCL4, CCL5, CCL8, CCR1, CCR2,
					CD36, CD48, CEACAM1, CXCL1,
					CXCL2, CXCL3, CXCL5, ICAM1,
					ICAM3, ITGA2, ITGAM, ITGAX,
					ITGB2, MMP10, MMP19, MMP9,
					PLAUR, PPBP, RASSF5, SELE,
					SELL, SELPLG, VCAM1
NF-kB Signaling	6.80	2.8e-04	7	25	BCL3, BCL6, NFKB1, NFKB2, NFK-
					BIA, NFKBIE, RELB
Innate pathogen detection	6.10	3.2e-05	10	39	CD14, IRAK1, IRAK3, LY96, MYD88,
					NLRC4, NOD2, PYCARD, TLR2,
					TLR8
Leukocyte Signaling	5.60	1.1e-09	23	96	CD37, CD44, CD52, CD53, CD86,
					FCER1G, FCGR2A, FCGR2B,
					LCP2, LILRA2, LILRA3, LILRA6,
					LILRB2, NAMPT, PIK3AP1, PT-
					PRC. SECTM1. SEMA4D. SIGLEC10.
					SIRPA, SYK, TCIRG1, TREM1
Eicosanoid Signaling	4 80	3 4e-03	6	28	ALOX5 ALOX5AP PLA2G2A PT-
Licostational Signating	1.00	0.10 00		20	GEB4 PTGES PTGS2
Phagocytosis Ag procen	3 20	2 80.02	۲.	20	CD1D CTSS PSMR0 TAP1 TAPRD
tation	0.20	2.00-02		34	$ $ $\bigcirc$ $\square$ $\square$ $\bigcirc$ $\square$
MADK Signaling	2 40	2 60 02	0	66	IEI16 IVN MAD2K5 MVC DDKCD
	2.40	2.08-02	0		DAC2 DDC6 $VA1$ CHC1
					1 AO2, AFSUKAI, SHUI

```
}
unique(entrezIDs)
})
save(sncPwys, file=file.path("annotData", "sncPwys.RData"))
} else
load(file.path("annotData", "sncPwys.RData"))
```

These pathways have the following numbers of Entrez genes annotated to them:

We build a GeneSetCollection object with these pathways and the apoptosis gene set, and assess the null hypothesis that none of them is enriched with at least 5 up or down regulated DE genes and a minimum OR > 1.5 at FDR < 10%:

```
> sncApoPwys <- sncPwys</pre>
> sncApoPwys$Apoptosis <- apopGenes</pre>
> sncApoPwys <- do.call("GeneSetCollection",</pre>
                   mapply(function(geneSetID, geneIDs) {
                     GeneSet(EntrezIdentifier("org.Hs.eg.db"),
                        geneIds=geneIDs,
                        setName=geneSetID)
                   }, names(sncApoPwys),
                   sncApoPwys, USE.NAMES=FALSE))
> DEgenesUp <- DEgenes[ttAllIQRfilt[DEgenes, "logFC"] > 0]
> gUniverse <- ttAll[ttAll$logFC > 0, "ID"]
> sncApoPwysFEup <- funEnrichment(sncApoPwys, DEgenesUp, gUniverse, minsize=5)</p>
> sncApoPwysFEup
                        OddsRatio
                                        Pvalue Counts Size
                                                                      FDR
SASP
                         4.677228 0.0008447174
                                                     8
                                                         38 0.0021117934
                         4.250972 0.0014290837
Apoptosis
                                                         41 0.0023818062
                                                     8
CellularResponseStress
                        3.271414 0.0001989556
                                                    15
                                                         96 0.0009947782
CellularSenescence
                         2.830182 0.0053956450
                                                    10
                                                         72 0.0067445562
> DEgenesDown <- DEgenes[ttAllIQRfilt[DEgenes, "logFC"] < 0]
> gUniverse <- ttAll[ttAll$logFC < 0, "ID"]</pre>
> sncApoPwysFEdown <- funEnrichment(sncApoPwys, DEgenesDown, gUniverse, minsize=5)</pre>
> sncApoPwysFEdown
                        OddsRatio
                                    Pvalue Counts Size
                                                               FDR.
CellularResponseStress 1.135733 0.443395
                                                     98 0.7485706
                                                 6
```

We can see that 4 and 0 gene sets are enriched with 5 or more up and down regulated DE genes, respectively, at FDR < 10% and with a minimum OR > 1.5.

In Figure 16 we have the expression values of the DE genes annotated to each of the enriched pathways, compared between FIR and non-FIR samples.

We are going to assess now whether these senescence and apoptosis pathways together are enriched for DE genes. We consider first as DE all genes with significant expression changes at FDR < 1%:

```
> maskDEpwys <- sncApoPwysFEup$FDR < 0.1 & sncApoPwysFEup$OddsRatio > 1.5
> genesByDEsncApoPwys <- lapply(geneIds(sncApoPwys)[rownames(sncApoPwysFEup)[maskDEpwys]],</pre>
```

function(x, g) x[!is.na(match(x, g))], featureNames(frmaEsetFilt)

```
> sigGenes <- ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < FDRcutoff]</pre>
```

```
> N <- nrow(ttAll)
```



**Figure 16.** Expression values of genes belonging to apoptosis and senescence pathways significantly enriched by genes called DE between FIR and nonaffected-FIR infants at FDR<1% and minimum 1.5-fold change.

```
> m <- length(intersect(unique(unlist(genesByDEsncApoPwys, use.names=FALSE)), ttAll$ID))
> n <- length(sigGenes)</pre>
> k <- length(intersect(sigGenes, unique(unlist(genesByDEsncApoPwys, use.names=FALSE))))
 t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
>
             dimnames=list(InflamSenesc=c("in", "out"), DE=c("yes", "no")))
> t.
            DE
InflamSenesc
              yes
                     no
         in
               84
                    176
         out 3812 16083
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 4.003e-07
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 1.598015
               Inf
sample estimates:
odds ratio
 2.013625
```

Thus, DE senescence and apoptosis pathways are enriched for DE genes at FDR<1%. Let's test now for up-regulated genes significantly DE at the same level:

```
> sigGenes <- ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < FDRcutoff & ttAllIQRfilt$logFC > 0]
> N <- nrow(ttAll[ttAll$logFC > 0, ])
> m <- length(intersect(unique(unlist(genesByDEsncApoPwys, use.names=FALSE)),</pre>
                        ttAll$ID[ttAll$logFC > 0]))
> n <- length(sigGenes)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC > 0],
                        intersect(sigGenes,
                                  unique(unlist(genesByDEsncApoPwys, use.names=FALSE)))))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(InflamSenesc=c("in", "out"), DE=c("yes", "no")))
> t
            DE
InflamSenesc yes
                    no
             43
         in
                    92
         out 1436 9297
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 3.393e-08
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
2.176907
               Inf
sample estimates:
odds ratio
 3.025565
```

Up-regulated genes at FDR<1% enrich significantly DE senescence and apoptosis pathways with a larger odds ratio than all up and down regulated genes. Finally, let's test for up-regulated DE genes at FDR<1% and with a minimum 1.5-fold change:

```
> sigGenes <- ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val < FDRcutoff &</pre>
                               ttAllIQRfilt$logFC > log2(fcCutoff)]
> N <- nrow(ttAll[ttAll$logFC > 0, ])
> m <- length(intersect(unique(unlist(genesByDEsncApoPwys, use.names=FALSE)),</pre>
                        ttAll$ID[ttAll$logFC > 0]))
> n <- length(sigGenes)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC > 0],
                        intersect(sigGenes,
                                   unique(unlist(genesByDEsncApoPwys, use.names=FALSE)))))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(Inflammatory=c("in", "out"), DE=c("yes", "no")))
> t
            DE
Inflammatory yes
                    no
            23
         in
                   112
         out 569 10164
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 9.324e-07
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
2.40281
             Inf
```

sample estimates:
odds ratio
 3.667361

Inflammatory pathways show again a significant enrichment for genes called DE at FDR < 1% and with a minimum 1.5-fold change with a larger odds ratio than the other two subsets of DE genes.

We cross-classify the set of significantly up-regulated DE genes into the the apoptosis and senescence pathways they are enriching. This cross-classification is shown in Table 18.

**Table 18.** Significantly upregulated genes called differentially expressed at FDR <1% with a minimum 1.5-fold change cross-classified into apoptosis and senescence pathways selected by enrichment analysis at FDR <10% and OR >1.5.

Pathway	OR	P.value	Counts	Size	Genes
SASP	4.70	8.4e-04	8	38	CDKN1A, CEBPB, CXCL8, IL1A, IL6,
					NFKB1, RPS6KA1, STAT3
Apoptosis	4.30	1.4e-03	8	41	BCL2A1, BID, BIRC3, CFLAR,
					MCL1, TNFRSF10B, TNFRSF10D,
					TNFRSF21
CellularResponseStress	3.30	2.0e-04	15	96	CDKN1A, CEBPB, CXCL8, ERO1L,
					GPX3, HIF1A, IL1A, IL6, KDM6B,
					MAP3K5, NFKB1, RPS6KA1, SOD2,
					STAT3, VEGFA
CellularSenescence	2.80	5.4e-03	10	72	CDKN1A, CEBPB, CXCL8, IL1A,
					IL6, KDM6B, MAP3K5, NFKB1,
					RPS6KA1, STAT3

## 4.4 Enrichment of DE genes among targets of FMRP (FMR1 gene)

We assess enrichemnt of DE genes among targets of the fragile X syndrom protein (FMRP), encoded by the FMR1 gene. These targets were obtained from the publication by (15).

```
> library(xlsx)
> if (!file.exists("annotData/fmrpTargets.RData")) {
    ## in the Excel file from TableS2 in Darnel et al. (2011)
    ## gene symbol is the human gene symbol
    fmrpTargetsDf <- read.xlsx("annotData/DarnellDarnell11_FMRPtargetsTableS2.xls",</pre>
                                 sheetIndex=1, startRow=2, stringsAsFactors=FALSE,
                                 check.names=FALSE)
    fmrpTargets <- select(org.Hs.eg.db, keys=fmrpTargetsDf$`Gene Symbol`,</pre>
                           columns="ENTREZID", keytype="SYMBOL")
    missingIDs <- fmrpTargets$SYMBOL[is.na(fmrpTargets$ENTREZID)]</pre>
    missingIDs
    alias2eg <- select(org.Hs.eg.db, keys=missingIDs, columns="ENTREZID", keytype="ALIAS")
    alias2eg <- split(alias2eg$ENTREZID, alias2eg$ALIAS)</pre>
    alias2eg <- sapply(alias2eg,</pre>
                        function(x, tt) {
                          if (any(!is.na(x))) {
                            lfc <- abs(tt$logFC)[tt$ID %in% x]</pre>
                            if (length(lfc) > 0)
                              x <- tt$ID[tt$ID %in% x][which.max(lfc)]</pre>
                            else
                              x <- x[1]
                          }
                          x
```

```
}, ttAll)
    stopifnot(nrow(fmrpTargets) == length(unique(fmrpTargets$SYMBOL))) ## QC
    fmrpTargets[match(names(alias2eg), fmrpTargets$SYMBOL), "ENTREZID"] <- alias2eg</pre>
    fmrpTargets <- fmrpTargets$ENTREZID[!is.na(fmrpTargets$ENTREZID)]</pre>
    length(fmrpTargets)
    save(fmrpTargets, file="annotData/fmrpTargets.RData")
 } else
    load("annotData/fmrpTargets.RData")
> N <- nrow(ttAll)
> m <- length(intersect(fmrpTargets, ttAll$ID))</pre>
> mask <- ttAllIQRfilt$adj.P.Val < FDRcutoff</pre>
> n <- sum(mask)</pre>
> k <- length(intersect(ttAllIQRfilt$ID,</pre>
                         intersect(fmrpTargets, ttAllIQRfilt$ID[mask])))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(FMRPtargets=c("in", "out"), DE=c("yes", "no")))
> t
           DE
FMRPtargets yes
                    no
        in
             214
                    609
        out 3682 15650
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data:
      t.
p-value = 1.086e-06
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
 1.30055
             Tnf
sample estimates:
odds ratio
   1.49354
```

### 4.5 Enrichment of DE genes among targets of the APC gene

We assess enrichemnt of DE genes among targets of the adenomatous polyposis coli (APC) gene. These targets were obtained from the publication by (16).

```
> if (!file.exists("annotData/apcTargets.RData")) {
    ## in the Excel file from TableS1 in Preitner et al. (2014)
    ## gene symbol is the human gene symbol
    apcTargetsDf <- read.xlsx("annotData/Preitner14_APCtargetsTableS1.xlsx",
                               sheetIndex=1, startRow=1, stringsAsFactors=FALSE,
                               check.names=FALSE)
    apcTargets <- select(org.Hs.eg.db, keys=toupper(apcTargetsDf$`Gene Symbol`),
                          columns="ENTREZID", keytype="SYMBOL")
    apcTargets <- split(apcTargets$ENTREZID, apcTargets$SYMBOL)</pre>
    apcTargets <- sapply(apcTargets,</pre>
                        function(x, tt) {
                          if (any(!is.na(x))) {
                            lfc <- abs(tt$logFC)[tt$ID %in% x]</pre>
                            if (length(lfc) > 0)
                              x <- tt$ID[tt$ID %in% x][which.max(lfc)]</pre>
                            else
                              x <- x[1]
```

```
}
                          х
                        }, ttAll)
   missingIDs <- names(apcTargets)[is.na(apcTargets)]</pre>
   missingIDs
    alias2eg <- select(org.Hs.eg.db, keys=missingIDs, columns="ENTREZID", keytype="ALIAS")
    alias2eg <- split(alias2eg$ENTREZID, alias2eg$ALIAS)</pre>
    alias2eg <- sapply(alias2eg,</pre>
                        function(x, tt) {
                          if (any(!is.na(x))) {
                            lfc <- abs(tt$logFC)[tt$ID %in% x]</pre>
                            if (length(lfc) > 0)
                              x <- tt$ID[tt$ID %in% x][which.max(lfc)]</pre>
                            else
                              x <- x[1]
                          }
                          х
                        }, ttAll)
    stopifnot(length(apcTargets) == length(unique(names(apcTargets)))) ## QC
    apcTargets[match(names(alias2eg), names(apcTargets))] <- alias2eg
    apcTargets <- apcTargets[!is.na(apcTargets)]</pre>
    length(apcTargets)
    save(apcTargets, file="annotData/apcTargets.RData")
 } else
    load("annotData/apcTargets.RData")
> N <- nrow(ttAll)
> m <- length(intersect(apcTargets, ttAll$ID))</pre>
> mask <- ttAllIQRfilt$adj.P.Val < FDRcutoff</pre>
> n <- sum(mask)</pre>
> k <- length(intersect(ttAllIQRfilt$ID,
                         intersect(apcTargets, ttAllIQRfilt$ID[mask])))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(APCtargets=c("in", "out"), DE=c("yes", "no")))
> t
          DE
APCtargets yes
                   no
       in
            62
                  181
       out 3834 16078
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 0.01047
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
1.10933
             Tnf
sample estimates:
odds ratio
  1.436428
```

#### 4.6 Enrichment of DE genes in human phenotype ontology (HPO) terms

We assess enrichment of DE genes in gene sets from the human phenotype ontology (17).

```
> load("annotData/human-phenotype-ontology.RData")
> gUniverse <- ttAll[ttAll$logFC > 0, "ID"]
> OBOparams <- new("OBOHyperGParams", geneIds=DEgenesUp, universeGeneIds=gUniverse,</pre>
                   pvalueCutoff=goAnalysisCondPvalueCutoff, conditional=TRUE,
                   testDirection="over", datPkg=OBOCollectionDatPkg(oboHPO, gscHPO))
> cache(hgOverHPOdeGenesUp <- hyperGTest2(OBOparams, minSizeCutoff=5, maxSizeCutoff=300,
                                           orCutoff=1.5),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> hgOverHPOdeGenesUp
Gene to OBO Conditional test for over-representation
5842 OBO ids tested (82 have p < 0.01)
Selected gene set size: 118
    Gene universe size: 1610
    Annotation package: OBO
> IQRs <- apply(cleanExps[gUniverse, ], 1, IQR)</pre>
> cache(reportOverHPOdeGenesUp <- GOreport(hgOverHPOdeGenesUp, minSize=5, maxSize=300,</p>
                                     minCount=5, minOddsRatio=1.5, featureFilterValues=IQRs,
                                      ff.R=1000, ff.prob=0.90, maxReported=Inf,
                                     p.value=0.1, p.adjust.method="fdr"),
        dir=cacheDir_FE, prefix=cachePrefix_FE)
> dim(reportOverHPOdeGenesUp)
[1] 39 10
```

**Table 19.** Human Phenotype Ontology (HPO) enrichment of upregulated genes called differentially expressed at FDR < 1% and with a minimum 1.5-fold change between FIR and nonFIR affected infants. Column "GeneSyms" contains the genes enriching the corresponding HPO term.

Term	OddsRatio	ExpCount	Count	Size	GeneSyms
Recurrent staphy-	Inf	0.37	5	5	NCF2, ITGB2, STAT3, CYBA,
lococcal infections					CYBB
Liver abscess	Inf	0.37	5	5	NCF2, NCF4, CTSC, CYBA,
					CYBB
Recurrent bacterial	23.46	0.81	7	11	NCF2, CTSC, PSTPIP1,
skin infections					CYBA, CYBB, GJB2, IL10RA
Gingivitis	13.49	1.17	8	16	STAT3, CYBA, CYBB, NCF2,
					NCF4, ITGB2, CTSC, COL3A1
Aortic dissection	13.16	0.73	5	10	FBN1, TGFBR2, COL5A2,
					COL1A1, COL3A1
Chronic obstructive	10.96	0.81	5	11	CYBA, CYBB, SERPINA1,
pulmonary disease					NCF2, NCF4
Recurrent skin in-	9.39	1.61	9	22	NCF2, IL17RA, PSTPIP1,
fections					CYBA, CYBB, GJB2, CLEC7A,
					CTSC, IL10RA
Premature loss of	8.21	0.95	5	13	VDR, CTSC, SNX10, COL3A1,
primary teeth					TCIRG1
Mediastinal lym-	8.21	0.95	5	13	CYBA, CYBB, NCF2, NCF4,
phadenopathy					BIRC3
Abnormality of the	7.78	1.39	7	19	TGFBR2, PDGFRA, NCF2,
rectum					ITGB2, CYBA, CYBB, GREM1
Abnormality of the	7.29	1.03	5	14	CYBA, CYBB, NCF2, NCF4,
thoracic cavity					BIRC3
Ectopia lentis	7.21	1.25	6	17	FBN1, COL11A1, COL5A2,
					TAP1, TAPBP, COL1A1
	Тавіе	15 continu	ea nem p	revious	pube
-------------------------------	-------	------------	----------	---------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Premature loss of teeth	7.17	1.47	7	20	VDR, SNX10, COL3A1, TCIRG1, TNFRSF11B, RUNX2, CTSC
Urticaria	6.66	1.54	7	21	MYD88, PDGFRA, NCF2, NCF4, CYBA, CYBB, GJB2
Emphysema	6.61	1.32	6	18	FBN1, TAP1, SERPINA1, TAPBP, NFKB2, PRKCD
Cellulitis	6.61	1.32	6	18	STAT3, CYBA, CYBB, PIK3CD, NCF2, COL1A1
Recurrent fungal infections	6.21	1.61	7	22	NCF2, STAT3, IL17RA, CYBA, CYBB, DOCK8, CLEC7A
Abnormality of macrophages	5.96	1.17	5	16	STXBP2, NOD2, CYBA, CYBB, NCF2
Lymphadenopathy	5.53	4.76	18	65	MYD88, TGFBR2, ABCA1, SNX10, CTHRC1, TCIRG1, NOD2, PSTPIP1, CYBA, RAB27A, NFKB2, PRKCD, PIK3CD, NCF2, NCF4, PT- PRC, BIRC3, CYBB
Osteomyelitis	5.16	1.83	7	25	IFNGR1, NCF2, TCIRG1, IL1RN, STAT3, CYBA, CYBB
Sinusitis	3.98	4.25	13	58	MYD88, SNX10, TCIRG1, CYBA, DOCK8, NFKB2, PRKCD, NCF2, NCF4, CYBB, RUNX2, TAP1, TAPBP
Skin ulcer	3.60	5.35	15	73	MYD88, NOD2, PSTPIP1, GJB2, NCF2, NCF4, CYBB, TAP1, TAPBP, CLEC7A, CTSC, IL17RA, CYBA, DOCK8, STAT3
Abnormal bleeding	3.17	9.45	23	129	TGFBR2, FERMT3, NOD2, PRLR, TCIRG1, ITGA2, SER- PINE1, DOCK8, PRKCD, COL1A1, IL10RA, MYD88, SNX10, ADAMTS2, PDGFRA, COL5A2, COL3A1, GREM1, CD36, RAB27A, PLAU, NFKB2, FCGR2C
Subcutaneous hem- orrhage	3.16	5.50	14	75	MYD88, FERMT3, SNX10, NOD2, ADAMTS2, COL5A2, COL3A1, TCIRG1, ITGA2, RAB27A, PLAU, NFKB2, PRKCD, COL1A1
Abnormality of oral mucosa	3.10	5.57	14	76	MYD88, IL1RN, GJB2, ADAMTS2, NCF2, NCF4, COL3A1, CYBB, CTSC, ITGB2, CYBA, FAM20C, WNT5A, STAT3
Arthralgia	3.07	4.76	12	65	IL1RN, NOD2, PSTPIP1, NFKB2, PRKCD, COMP, COL11A1, PTPN2, COL3A1, C1R, NLRC4, TYROBP

		_		
Table 19 –	continued	from	previous	page

Table 19 – Continued on next page

Abnormality of	3.03	7.92	19	108	STXBP2, MYD88, SNX10,
temperature regu-					NOD2, PSTPIP1, NCF2, NCF4,
lation					BIRC3, CYBB, CLEC7A,
					TCIRG1, IL17RA, CYBA,
					RAB27A, NFKBIA, COL1A1,
					GCH1, STAT3, NLRC4
Otitis media	2.86	5.50	13	75	FBN1, NCF2, NCF4, CYBB,
					RUNX2, TAP1, TAPBP, CYBA,
					DOCK8, NFKB2, PRKCD, PT-
					PRC, STAT3
Abnormality of hu-	2.82	6.01	14	82	MYD88, CFP, PSTPIP1, JAK3,
moral immunity					CXCR4, DOCK8, NFKB2,
					PRKCD, COL1A1, PIK3CD,
					C1R, STAT3, C1S, C3
Recurrent infec-	2.63	14.26	29	204	FBN1, TGFBR2, FERMT3,
tions					GJB2, JAK3, CTSC, ITGB2,
					TCIRG1, PRKCD, COL1A1,
					WNT5A, C1R, C3, IL10RA,
					SNX10. PSTPIP1. COL5A2.
					NCF4. BIRC3. CORO1A.
					RUNX2 TAP1 TAPBP
					CXCB4 BAB27A NFKBIA
					NFKB2 PIK3CD PTPBC
Recurrent respira-	2.62	12.02	25	164	FBN1 CYBB JAK3 CLEC7A
tory infections	2.02	12.02	20	101	CTSC TCIBG1 DOCK8
tory intections					PRKCD WNT5A C1B
					SNX10 NCE2 NCE4 BIBC3
					CORO1A RUNX2 TAP1
					TAPBP CXCR4 IL17RA
					CVBA NEKBIA NEKB2
					DIK2CD STAT2
Arthritic	2.55	6.01	12	80	FRM1 NOD2 DSTDID1 CIR2
ALTITUTS	2.00	0.01	10	02	$\Gamma DN1, NOD2, \Gamma SIT II 1, GJD2, COMP COL 11A1 COL 5A2$
					COLPA1 CTSC COL1A1
					$\begin{array}{cccc} \text{COLSAI}, & \text{CISC}, & \text{COLIAI}, \\ \text{DTDN9} & \text{C1D} & \text{STAT9} \end{array}$
A han anna a liter of alrin	9.49	0.07	20	196	NOD2 CID2 CVDD CLEC7A
Abnormality of skin	2.42	9.97	20	130	NOD2, GJB2, CYBB, CLEC/A,
physiology					UISC, GLUL, DOCKS,
					DETERMINE DECERA NOR
					PSIPIPI, PDGFRA, NCF2,
					NCF4, OSMR, IL17RA, CYBA,
	0.41	0.00	14	0.0	PIPKU, STAT3
Abnormality of	2.41	6.82	14	93	STABP2, MYD88, PSTPIP1,
lymphocytes					COROIA, JAK3, CXCR4,
					RAB27A, DOCK8, NFKB2,
					PRKCD, COL1A1, PIK3CD,
					PTPRC, STAT3

Table 19 – continued	from	previous	page
----------------------	------	----------	------

Table 19 – Continued on next page

Abnormality of cel-	2.20	14.37	26	196	FERMT3, NOD2, CYBB,
lular immune sys-					JAK3, BCL3, ITGB2, DOCK8,
tem					PRKCD, COL1A1, STXBP2,
					MYD88, ARHGAP26, PST-
					PIP1, PDGFRA, NCF2, NCF4,
					CORO1A, TYROBP, CXCR4,
					CYBA, RAB27A, NFKB2,
					RAC2, PIK3CD, PTPRC,
					STAT3
Splenomegaly	2.19	10.19	19	139	FERMT3, ABCA1, NOD2,
					CYBB, TCIRG1, PRKCD,
					MYD88, LYZ, SNX10, IL1RN,
					PDGFRA, NCF2, NCF4,
					CYBA, RAB27A, NFKB2,
					PIK3CD, PTPRC, NLRC4
Abnormality of the	2.12	10.76	19	170	FBN1, IL17RA, FCGR2C,
immune system					GJB2, $CLEC7A$ , $C1R$ , $C1S$ , $C3$ ,
					RUNX2, TAP1, TAPBP, NFK-
					BIA, CTSC, WNT5A, CFP,
					COL5A2, ITGAM, IL10RA,
					PTPN2
Abnormality of the	1.97	15.61	26	213	TGFBR2, FERMT3, ABCA1,
lymphatic system					NOD2, CYBB, JAK3, TCIRG1,
					PRKCD, STXBP2, MYD88,
					LYZ, SNX10, CTHRC1,
					IL1RN, PSTPIP1, PDGFRA,
					NCF2, NCF4, BIRC3, CYBA,
					RAB27A, NFKB2, PIK3CD,
					PTPRC, CSF3R, NLRC4
Abnormality of	1.86	18.86	29	294	ABCA1, PGK1, PGD, PST-
blood and blood-					PIP1, IFNGR1, BIRC3,
forming tissues					CORO1A, TYROBP, PLAT,
					CYBA, PIK3CD, CSF3R,
					SLC11A2, CYBB, JAK3, BCL3,
					ITGB2, B4GALT1, STXBP2,
					MYC, ARHGAP26, NCF2,
					NCF4, CXCR4, SLC19A2,
					RAC2, PTPRC, STAT3, NLRC4

Table 19 - continued from previous page

## 4.7 Enrichment of DE genes among umbilical cord mensenchymal stem cell markers

We assess enrichment of DE genes among mesenchymal stem cell markers of the umbilical cord tissue, using a signature from (18) of mesenchymal stem cells derived from umbilical cord. The genes forming this signature were downloaded from (19).

First, let's assess enrichment with the set of genes called DE at 1% FDR:

```
> DEgenesFDR <- ttAllIQRfilt$ID[ttAllIQRfilt$adj.P.Val <= FDRcutoff]</pre>
> N <- nrow(ttAll)
> m <- length(intersect(mscGenes, ttAll$ID))</pre>
> n <- length(DEgenesFDR)</pre>
> k <- length(intersect(ttAllIQRfilt$ID, intersect(mscGenes, DEgenesFDR)))</pre>
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(ucMSCgenes=c("in", "out"), DE=c("yes", "no")))
> t
          DE
ucMSCgenes yes
                   no
             10
                    9
       in
       out 3886 16250
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 0.001192
alternative hypothesis: true odds ratio is greater than 1
```

```
95 percent confidence interval:

1.967201 Inf

sample estimates:

odds ratio

4.645821
```

Now, with the genes that are called DE at 1% FDR and have a minimum 1.5-fold change:

```
> N <- nrow(ttAll)
> m <- length(intersect(mscGenes, ttAll$ID))</pre>
> n <- length(DEgenes)</pre>
> k <- length(intersect(ttAllIQRfilt$ID, intersect(mscGenes, DEgenes)))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(ucMSCgenes=c("in", "out"), DE=c("yes", "no")))
> t
          DE
ucMSCgenes yes
                   no
                   14
       in
             5
       out 1092 19044
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 0.0029
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
2.149357
              Inf
sample estimates:
odds ratio
 6.227101
```

Now, examine the enrichment restricted to upregulated genes:

```
> N <- nrow(ttAll[ttAll$logFC > 0, ])
> m <- length(intersect(mscGenes, ttAll$ID[ttAll$logFC > 0]))
> n <- length(DEgenesUp)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC > 0],
                        intersect(mscGenes, DEgenesUp)))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(ucMSCgenes=c("in", "out"), DE=c("yes", "no")))
> t
          DE
ucMSCgenes yes
                  no
          4
                   6
       in
       out 588 10270
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 0.001406
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
3.073139
               Inf
sample estimates:
odds ratio
 11.63681
```

Finally, examine the enrichment restricted to downregulated genes:

```
> N <- nrow(ttAll[ttAll$logFC < 0, ])</pre>
> m <- length(intersect(mscGenes, ttAll$ID[ttAll$logFC < 0]))</pre>
> n <- length(DEgenesDown)</pre>
> k <- length(intersect(ttAllIQRfilt$ID[ttAllIQRfilt$logFC < 0],</pre>
                         intersect(mscGenes, DEgenesDown)))
> t <- array(c(k, n - k, m - k, N + k - n - m), dim = c(2, 2),
             dimnames=list(ucMSCgenes=c("in", "out"), DE=c("yes", "no")))
> t
          DF.
ucMSCgenes yes
                 no
             1
                   8
       in
       out 504 8774
> fisher.test(t, alternative="greater")
        Fisher's Exact Test for Count Data
data: t
p-value = 0.3955
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.09930754
                    Tnf
sample estimates:
odds ratio
 2.175819
```

In this latter case, there is no significant enrichment.

## 4.8 Summary table for targeted gene sets

Here we summarize the targeted gene sets we employed before and their annotation sources. This information is hardcoded in the hidden code building this table which is shown in this document as Table 20.

## 4.9 Session Information

- > toLatex(sessionInfo())
- R version 3.1.3 (2015-03-09), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF8, LC_NUMERIC=C, LC_TIME=en_US.UTF8, LC_COLLATE=en_US.UTF8, LC_MONETARY=en_US.UTF8, LC_MESSAGES=en_US.UTF8, LC_PAPER=en_US.UTF8, LC_NAME=en_US.UTF8, LC_ADDRESS=en_US.UTF8, LC_TELEPHONE=en_US.UTF8, LC_MEASUREMENT=en_US.UTF8, LC_IDENTIFICATION=en_US.UTF8
- Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils
- Other packages: affy 1.44.0, affyPLM 1.42.0, annotate 1.44.0, AnnotationDbi 1.28.2, Biobase 2.26.0, BiocGenerics 0.12.1, Category 2.32.0, DBI 0.3.1, gcrma 2.38.0, genefilter 1.48.1, GenomeInfoDb 1.2.5, GO.db 3.0.0, GOstats 2.32.0, graph 1.44.1, GSEABase 1.28.0, IRanges 2.0.1, limma 3.22.7, Matrix 1.2-0, mgcv 1.8-6, nlme 3.1-120, org.Hs.eg.db 3.0.0, preprocessCore 1.28.0, RColorBrewer 1.1-2, rJava 0.9-6, RSQLite 1.0.0, S4Vectors 0.4.0, sva 3.12.0, xlsx 0.5.7, xlsxjars 0.6.1, XML 3.98-1.1, xtable 1.7-4
- Loaded via a namespace (and not attached): affyio 1.34.0, AnnotationForge 1.8.2, BiocInstaller 1.16.4, Biostrings 2.34.1, grid 3.1.3, lattice 0.20-31, RBGL 1.42.0, splines 3.1.3, survival 2.38-1, tools 3.1.3, XVector 0.6.0, zlibbioc 1.12.0

**Table 20.** Description of targeted gene sets significantly enriched by genes called differentially expressed between FIR and nonFIR affected infants. The "Size" column specifies the number of genes in the gene set that map to the microarray expression data set analyzed in this article.

Gene Set	Size	Source			
Inflammation (innate re-	800	Table S1 from Loza et al. Assembly of inflammation-related genes			
sponse)		for pathway-focused genetic analysis. PLOS One, 2(10):e1035,			
		2007 [PMID:17940599]			
Inflammation (Th17 -	72	Table S1 from ciofani et al. A validated regulatory net-			
adaptive response)		work for Th17 cell specification. Cell, 151(2):289-303, 2012			
		[PMDI:23021777]			
Senescence	194	Belinky et al. PathCards: multi-source consolidation of human bi-			
		ological pathways. Database, 2015:bav006, 2015 [PMID:25725062]			
Apoptosis	68	Table S1 from Loza et al. Assembly of inflammation-related genes			
		for pathway-focused genetic analysis. PLOS One, 2(10):e1035,			
		2007 [PMID:17940599]			
FMRP targets	823	Table S2 from Darnell et al. FMRP stalls ribosomal transloca-			
		tion on mRNAs linked to synaptic function and autism. Cell,			
		146(2):247-261, 2011 [PMID:21784246]			
APC targets	243	Table S1 from Preitner et al. APC is an RNA-binding protein,			
		and its interactome provides a link to neural development and mi-			
		crotubule assembly. Cell, 158(2):368-382, 2014 [PMID:25036633]			
UC mesenchymal stem	19	Edgar et al. LifeMap discovery: the embryonic development,			
cells		stem cells, and regenerative medicine research portal. PLOS One,			
		8(7):e66629, 2013 [PMID:23874394]			

## References

- The R Foundation. The Comprehensive R Archive Network (CRAN). (http://cran.r-project. org).
- [2] Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5:R80.
- [3] National Center for Biotechnology Information. Gene Expression Omnibus (GEO). (http://www.ncbi.nlm.nih.gov/geo).
- [4] Brettschneider J, Collin F, Bolstad BM, Speed TP. Quality assessment for short oligonucleotide microarray data. Technometrics 2008; 50:241–264.
- [5] McCall MN, Bolstad BM, Irizarry RA. Frozen robust multiarray analysis (fRMA). Biostatistics 2010; 11:242–253.
- [6] Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3:1–25.
- [7] Miyazaki K, Furuhashi M, Ishikawa K, Tamakoshi K, Ikeda T, et al. The effects of antenatal corticosteroids therapy on very preterm infants after chorioamnionitis. Arch Gynecol Obstet 2014; 289:1185–1190.
- [8] Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for highthroughput experiments. Proc Natl Acad Sci U S A, May (2010) 107:9546–9551.
- [9] Madsen-Bouterse SA, Romero R, Tarca AL, et al. The transcriptome of the fetal inflammatory response syndrome. Am J Reprod Immunol 2010; 63:73–92.
- [10] Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006; 22:1600–1607.

- [11] Loza MJ, McCall CE, Li L, Isaacs WB, Xu J, Chang BL. Assembly of inflammation-related genes for pathway-focused genetic analysis. PLoS One 2007; 2:e1035.
- [12] Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification. Cell 2012; 151:289–303.
- [13] Belinky F, Nativ N, Stelzer G, et al. Pathcards: multi-source consolidation of human biological pathways. Database (Oxford) 2015; 2015:bav006.
- [14] LifeMap Sciences. PathCards Pathway Unification Database: Cellular Senescence. (http: //pathcards.genecards.org/card/cellular_senescence?term=senescence). [Online; accessed 30-March-2015].
- [15] Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011; 146:247–261.
- [16] Preitner N, Quan J, Nowakowski DW, et al. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 2014; 158:368–382.
- [17] Köhler S, Doelken SC, Mungall CJ, et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 2014; 42:D966–D974.
- [18] Edgar R, Mazor Y, Rinon A, et al. LifeMap Discovery[™]: The embryonic development, stem cells, and regenerative medicine research portal. PLoS One 2013; 8:e66629.
- [19] LifeMap Sciences. Embryonic Development & Stem Cell Compendium: Umbilical cord-derived mesenchymal stem cells. (http://discovery.lifemapsc.com/stem-cell-differentiation/in-vitro-cells/ mesenchymal-stem-cells-umbilical-cord-homo-sapiens-umbilical-cord-derived-mesenchymal-stem-cell panel_GeneExpression). [Online; accessed 16-March-2015].